版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第06講2.3直線的交點(diǎn)坐標(biāo)與距離公式(2.3.1兩條直線的交點(diǎn)坐標(biāo)+2.3.2兩點(diǎn)間的距離公式+2.3.3點(diǎn)到直線的距離公式+2.3.4兩條平行線間的距離公式)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握兩條直線的位置關(guān)系中的相交幾何意義,并能根據(jù)已知條件求出兩條直線的交點(diǎn)坐標(biāo),并能根據(jù)兩條直線相交的性質(zhì)求待定參數(shù)。②會求平面內(nèi)點(diǎn)與直線的距離,并能解決與距離有關(guān)的平面幾何問題。③.會用兩點(diǎn)間的距離公式求平面內(nèi)兩點(diǎn)間的距離.。④能應(yīng)用公式求兩平行線間的距離,以此解決與平面距離有關(guān)的綜合問題。1.會求兩條直線的交點(diǎn)坐標(biāo),通過兩條直線相交的性質(zhì),解決與直線相交有關(guān)的問題;2.掌握利用向量法推導(dǎo)兩點(diǎn)間距離公式的方法,并能用兩點(diǎn)間距離公式求兩點(diǎn)間的距離,以及解決與平面距離相關(guān)的問題;3.會用公式解決與點(diǎn)到直線距離有關(guān)的問題,并能解決與之相關(guān)的綜合問題;4.熟練應(yīng)用公式求平面內(nèi)兩平行線間的距離,以及與距離有關(guān)的參數(shù)的求解,能處理平面內(nèi)與距離有關(guān)的問題.;知識點(diǎn)01:兩條直線的交點(diǎn)坐標(biāo)直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的公共點(diǎn)的坐標(biāo)與方程組SKIPIF1<0的解一一對應(yīng).SKIPIF1<0與SKIPIF1<0相交SKIPIF1<0方程組有唯一解,交點(diǎn)坐標(biāo)就是方程組的解;SKIPIF1<0與SKIPIF1<0平行SKIPIF1<0方程組無解;SKIPIF1<0與SKIPIF1<0重合SKIPIF1<0方程組有無數(shù)個解.【即學(xué)即練1】(2023·江蘇·高二假期作業(yè))分別判斷下列直線SKIPIF1<0與SKIPIF1<0是否相交.如果相交,求出交點(diǎn)的坐標(biāo).(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.【答案】(1)相交,交點(diǎn)坐標(biāo)為SKIPIF1<0(2)不相交(3)不相交【詳解】(1)解方程組SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0相交,交點(diǎn)坐標(biāo)為SKIPIF1<0.(2)解方程組SKIPIF1<0,方程組無解,所以SKIPIF1<0與SKIPIF1<0無公共點(diǎn),即SKIPIF1<0與SKIPIF1<0不相交.(3)解方程組SKIPIF1<0,因?yàn)榉匠蘏KIPIF1<0可化為SKIPIF1<0,所以方程組有無數(shù)組解,所以SKIPIF1<0與SKIPIF1<0有無數(shù)個公共點(diǎn),即SKIPIF1<0與SKIPIF1<0不相交.知識點(diǎn)02:兩點(diǎn)間的距離平面上任意兩點(diǎn)SKIPIF1<0,SKIPIF1<0間的距離公式為SKIPIF1<0特別地,原點(diǎn)SKIPIF1<0與任一點(diǎn)SKIPIF1<0的距離SKIPIF1<0.【即學(xué)即練2】(2023·江蘇·高二假期作業(yè))已知點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離為SKIPIF1<0,則SKIPIF1<0________.【答案】9或SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:9或SKIPIF1<0.知識點(diǎn)03:點(diǎn)到直線的距離平面上任意一點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0的距離SKIPIF1<0.【即學(xué)即練3】(2023春·上海青浦·高二統(tǒng)考期末)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為__________.【答案】SKIPIF1<0【詳解】由點(diǎn)到直線的距離公式,可得點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.故答案為:SKIPIF1<0.知識點(diǎn)04:兩條平行線間的距離一般地,兩條平行直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)間的距離SKIPIF1<0.【即學(xué)即練4】(2023秋·廣西河池·高二統(tǒng)考期末)已知直線SKIPIF1<0,SKIPIF1<0相互平行,則SKIPIF1<0、SKIPIF1<0之間的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)橹本€SKIPIF1<0,SKIPIF1<0相互平行,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0之間的距離SKIPIF1<0.故選:A.知識點(diǎn)05:對稱問題1、點(diǎn)關(guān)于點(diǎn)對稱問題(方法:中點(diǎn)坐標(biāo)公式)求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對稱點(diǎn)SKIPIF1<0由:SKIPIF1<0SKIPIF1<0SKIPIF1<02、點(diǎn)關(guān)于直線對稱問題(聯(lián)立兩個方程)求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0:SKIPIF1<0的對稱點(diǎn)SKIPIF1<0①設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0利用中點(diǎn)坐標(biāo)公式得SKIPIF1<0,將SKIPIF1<0代入直線SKIPIF1<0:SKIPIF1<0中;②SKIPIF1<0整理得:SKIPIF1<0【即學(xué)即練5】(2023秋·高二課時練習(xí))若點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0_________;SKIPIF1<0__________.【答案】42【詳解】依題意,直線SKIPIF1<0的斜率為SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0,于是SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:4;23、直線關(guān)于點(diǎn)對稱問題(求SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對稱直線SKIPIF1<0,則SKIPIF1<0)方法一:在直線SKIPIF1<0上找一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱的點(diǎn)SKIPIF1<0,根據(jù)SKIPIF1<0,再由點(diǎn)斜式求解;方法二:由SKIPIF1<0SKIPIF1<0,設(shè)出SKIPIF1<0的直線方程,由點(diǎn)SKIPIF1<0到兩直線的距離相等SKIPIF1<0求參數(shù).方法三:在直線SKIPIF1<0任意一點(diǎn)SKIPIF1<0,求該點(diǎn)關(guān)于點(diǎn)SKIPIF1<0對稱的點(diǎn)SKIPIF1<0,則該點(diǎn)SKIPIF1<0在直線SKIPIF1<0上.【即學(xué)即練6】(2023·高二單元測試)直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對稱直線方程是______.【答案】SKIPIF1<0【詳解】設(shè)對稱直線為SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0解這個方程得SKIPIF1<0(舍)或SKIPIF1<0.所以對稱直線SKIPIF1<0的方程中SKIPIF1<0.故答案為:SKIPIF1<0.4、直線關(guān)于直線對稱問題4.1直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)相交,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱直線SKIPIF1<0①求出SKIPIF1<0與SKIPIF1<0的交點(diǎn)SKIPIF1<0②在SKIPIF1<0上任意取一點(diǎn)SKIPIF1<0(非SKIPIF1<0點(diǎn)),求出SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0③根據(jù)SKIPIF1<0,SKIPIF1<0兩點(diǎn)求出直線SKIPIF1<04.2直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)平行,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱直線SKIPIF1<0①SKIPIF1<0②在直線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,利用點(diǎn)斜式求直線SKIPIF1<0.【即學(xué)即練7】(2023·高二課時練習(xí))求直線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的直線SKIPIF1<0的方程.【答案】SKIPIF1<0【詳解】聯(lián)立兩直線方程SKIPIF1<0,解得SKIPIF1<0,即兩直線的交點(diǎn)為SKIPIF1<0,取直線SKIPIF1<0:SKIPIF1<0上一點(diǎn)SKIPIF1<0,設(shè)其關(guān)于直線SKIPIF1<0:SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,因?yàn)樗笾本€過SKIPIF1<0,SKIPIF1<0,方程為SKIPIF1<0,即SKIPIF1<0.【即學(xué)即練8】(2023春·上海寶山·高二上海市吳淞中學(xué)??计谥校┲本€SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的直線方程為________【答案】SKIPIF1<0【詳解】設(shè)所求直線方程為SKIPIF1<0,且SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0間的距離為SKIPIF1<0,則直線SKIPIF1<0與直線SKIPIF1<0間的距離為SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以所求直線方程為SKIPIF1<0,故答案為:SKIPIF1<0.題型01求直線交點(diǎn)坐標(biāo)【典例1】(2023·江蘇·高二假期作業(yè))直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)坐標(biāo)是(
)A.(2,0) B.(2,1)C.(0,2) D.(1,2)【答案】C【詳解】解方程組SKIPIF1<0得SKIPIF1<0,即直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)坐標(biāo)是(0,2).故選:C.【典例2】(2023秋·高二課時練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)位于第一象限,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】聯(lián)立SKIPIF1<0得SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)位于第一象限,所以SKIPIF1<0,解得SKIPIF1<0.故選:D【變式1】(2023秋·天津·高二校聯(lián)考期末)過直線SKIPIF1<0和SKIPIF1<0的交點(diǎn),且與直線SKIPIF1<0垂直的直線方程是(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】聯(lián)立方程SKIPIF1<0,解得SKIPIF1<0,所以交點(diǎn)坐標(biāo)為SKIPIF1<0;直線SKIPIF1<0的斜率為SKIPIF1<0,所以所求直線方程的斜率為SKIPIF1<0,由點(diǎn)斜式直線方程得:所求直線方程為SKIPIF1<0,即SKIPIF1<0;故選:B.【變式2】(2023·高二課時練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0相交且交點(diǎn)在第二象限內(nèi),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】若直線SKIPIF1<0與直線SKIPIF1<0平行或重合,則SKIPIF1<0,解得SKIPIF1<0,若直線SKIPIF1<0與直線SKIPIF1<0相交,可得SKIPIF1<0且SKIPIF1<0,則有:聯(lián)立方程SKIPIF1<0,解得SKIPIF1<0,即交點(diǎn)坐標(biāo)SKIPIF1<0,由題意可得:SKIPIF1<0,解得SKIPIF1<0;綜上所述:k的取值范圍為SKIPIF1<0.故選:C.題型02由方程組解的個數(shù)判斷直線的位置關(guān)系【典例1】(2023秋·高二課時練習(xí))判斷下列各對直線的位置關(guān)系.如果相交,求出交點(diǎn)坐標(biāo).(1)直線SKIPIF1<0;(2)直線SKIPIF1<0.【答案】(1)相交,交點(diǎn)是SKIPIF1<0(2)答案見解析【詳解】(1)聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以兩直線相交,交點(diǎn)坐標(biāo)為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,方程組有無數(shù)組解,故兩直線重合,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,方程組無解,故兩直線平行,當(dāng)SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以兩直線相交,交點(diǎn)坐標(biāo)為SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0時,兩直線重合;當(dāng)SKIPIF1<0時,兩直線平行;當(dāng)SKIPIF1<0時,兩直線相交,交點(diǎn)坐標(biāo)為SKIPIF1<0.【典例2】(2022·上?!じ呷龑n}練習(xí))若關(guān)于SKIPIF1<0、SKIPIF1<0的方程組SKIPIF1<0無解,則實(shí)數(shù)SKIPIF1<0________【答案】SKIPIF1<0【詳解】由題意關(guān)于SKIPIF1<0、SKIPIF1<0的方程組SKIPIF1<0無解,即直線SKIPIF1<0和直線SKIPIF1<0平行,故SKIPIF1<0,所以SKIPIF1<0,此時直線SKIPIF1<0即SKIPIF1<0,確實(shí)與SKIPIF1<0平行,故滿足題意,所以實(shí)數(shù)SKIPIF1<0.故答案為:-2.【變式1】(2022·高二課時練習(xí))若關(guān)于SKIPIF1<0的二元一次方程組SKIPIF1<0有無窮多組解,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】依題意二元一次方程組SKIPIF1<0有無窮多組解,即兩個方程對應(yīng)的直線重合,由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,二元一次方程組為SKIPIF1<0,兩直線不重合,不符合題意.當(dāng)SKIPIF1<0時,二元一次方程組為SKIPIF1<0,兩直線重合,符合題意.綜上所述,SKIPIF1<0的值為SKIPIF1<0.故答案為:SKIPIF1<0【變式2】(2022·高二課時練習(xí))關(guān)于SKIPIF1<0?SKIPIF1<0的二元一次方程組SKIPIF1<0有無窮多組解,則SKIPIF1<0與SKIPIF1<0的積是_____.【答案】-35【詳解】因?yàn)閤?y的二元一次方程組SKIPIF1<0有無窮多組解,所以直線SKIPIF1<0與直線SKIPIF1<0重合,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故答案為:-35題型03由直線交點(diǎn)的個數(shù)求參數(shù)【典例1】(2022秋·廣東廣州·高二廣州市第一一三中學(xué)??茧A段練習(xí))直線SKIPIF1<0與直線SKIPIF1<0相交,則實(shí)數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【答案】D【詳解】因直線SKIPIF1<0與直線SKIPIF1<0相交,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,所以實(shí)數(shù)k的值為SKIPIF1<0且SKIPIF1<0.故選:D【典例2】(2022·高二校聯(lián)考課時練習(xí))若關(guān)于SKIPIF1<0,SKIPIF1<0的方程組SKIPIF1<0有唯一解,則實(shí)數(shù)SKIPIF1<0滿足的條件是________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由SKIPIF1<0,可得SKIPIF1<0,由關(guān)于SKIPIF1<0,SKIPIF1<0的方程組SKIPIF1<0有唯一解,可得方程SKIPIF1<0有唯一解,則SKIPIF1<0故答案為:SKIPIF1<0【典例3】(2022·高二校聯(lián)考課時練習(xí))已知三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于一點(diǎn),求實(shí)數(shù)SKIPIF1<0的值;(2)若直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,求實(shí)數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0或4或SKIPIF1<0.【詳解】(1)∵直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于一點(diǎn),∴SKIPIF1<0與SKIPIF1<0不平行,∴SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,代入SKIPIF1<0的方程,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.(2)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于一點(diǎn),則SKIPIF1<0或SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則不存在滿足條件的實(shí)數(shù)SKIPIF1<0.綜上,可得SKIPIF1<0或SKIPIF1<0或4或SKIPIF1<0.【變式1】(2022·江蘇·高二專題練習(xí))若三條直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0共有兩個交點(diǎn),則實(shí)數(shù)SKIPIF1<0的值為(
)A.1 B.-2 C.1或-2 D.-1【答案】C【詳解】由題意可得三條直線中,有兩條直線互相平行,∵直線SKIPIF1<0和直線SKIPIF1<0不平行,∴直線SKIPIF1<0和直線SKIPIF1<0平行或直線SKIPIF1<0和直線SKIPIF1<0平行,∵直線SKIPIF1<0的斜率為1,直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.故選:C.【變式2】(2022·高二課時練習(xí))三條直線SKIPIF1<0?SKIPIF1<0?SKIPIF1<0有且只有兩個交點(diǎn),求實(shí)數(shù)SKIPIF1<0的值.【答案】SKIPIF1<0或SKIPIF1<0【詳解】由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0有一個交點(diǎn)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;即SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.題型04由直線的交點(diǎn)坐標(biāo)求參數(shù)【典例1】(2023秋·高一單元測試)若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)在第四象限,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由方程組SKIPIF1<0,解得SKIPIF1<0,即兩直線的交點(diǎn)坐標(biāo)為SKIPIF1<0,因?yàn)閮芍本€的交點(diǎn)位于第四象限,可得SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.【典例2】(2023·高二課時練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)在第一象限,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【詳解】由題意,直線SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,如圖所示,當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0,可得SKIPIF1<0;當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0,可得SKIPIF1<0,要使得直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)在第一象限,則SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·江蘇·高二假期作業(yè))若三條直線SKIPIF1<0和SKIPIF1<0交于一點(diǎn),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】C【詳解】解:聯(lián)立SKIPIF1<0得SKIPIF1<0.把SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0.故選:C【變式2】(2023·江蘇·高二假期作業(yè))兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)在SKIPIF1<0軸上,則SKIPIF1<0的值是(
)A.-24 B.6 C.±6 D.24【答案】C【詳解】因?yàn)閮蓷l直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)在SKIPIF1<0軸上,所以設(shè)交點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,消去SKIPIF1<0,可得SKIPIF1<0.故選:SKIPIF1<0.題型05三線圍成三角形問題【典例1】(2023秋·高二課時練習(xí))使三條直線SKIPIF1<0不能圍成三角形的實(shí)數(shù)SKIPIF1<0的值最多有幾個(
)A.3個 B.4個 C.5個 D.6個【答案】B【詳解】要使三條直線不能圍成三角形,存在兩條直線平行或三條直線交于一點(diǎn),若SKIPIF1<0平行,則SKIPIF1<0,即SKIPIF1<0;若SKIPIF1<0平行,則SKIPIF1<0,即無解;若SKIPIF1<0平行,則SKIPIF1<0,即SKIPIF1<0;若三條直線交于一點(diǎn),SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0;經(jīng)檢驗(yàn)知:SKIPIF1<0均滿足三條直線不能圍成三角形,故m最多有4個.故選:B【典例2】(2023·江蘇·高二假期作業(yè))若三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0能構(gòu)成三角形,求SKIPIF1<0應(yīng)滿足的條件.
【答案】SKIPIF1<0且SKIPIF1<0【詳解】為使三條直線能構(gòu)成三角形,需三條直線兩兩相交且不共點(diǎn).①若SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0;②若SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0;③若SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0三線重合,當(dāng)SKIPIF1<0時,SKIPIF1<0平行.④若三條直線交于一點(diǎn),由SKIPIF1<0,解得SKIPIF1<0,將SKIPIF1<0的交點(diǎn)SKIPIF1<0的坐標(biāo)代入SKIPIF1<0的方程,解得SKIPIF1<0(舍去),或SKIPIF1<0,所以要使三條直線能構(gòu)成三角形,需SKIPIF1<0且SKIPIF1<0.【變式1】(多選)(2023·全國·高二專題練習(xí))三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0構(gòu)成三角形,則SKIPIF1<0的值不能為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.-2【答案】AC【詳解】直線SKIPIF1<0與SKIPIF1<0都經(jīng)過原點(diǎn),而無論SKIPIF1<0為何值,直線SKIPIF1<0總不經(jīng)過原點(diǎn),因此,要滿足三條直線構(gòu)成三角形,只需直線SKIPIF1<0與另兩條直線不平行,所以SKIPIF1<0.故選:AC.【變式2】(2023秋·浙江寧波·高二期末)若三條直線SKIPIF1<0與SKIPIF1<0能圍成一個直角三角形,則SKIPIF1<0__________.【答案】SKIPIF1<0或1【詳解】顯然,3x-y+1=0,x+y+3=0有交點(diǎn),若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0;若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0.所以SKIPIF1<0或1.故答案為:SKIPIF1<0或1題型06直線交點(diǎn)系方程及其應(yīng)用【典例1】(2023·江蘇·高二假期作業(yè))設(shè)直線SKIPIF1<0經(jīng)過SKIPIF1<0和SKIPIF1<0的交點(diǎn),且與兩坐標(biāo)軸圍成等腰直角三角形,則直線SKIPIF1<0的方程為___________.【答案】SKIPIF1<0或SKIPIF1<0【詳解】方法一:由SKIPIF1<0,得SKIPIF1<0,所以兩條直線的交點(diǎn)坐標(biāo)為(14,10),由題意可得直線SKIPIF1<0的斜率為1或-1,所以直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.方法二:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,整理得SKIPIF1<0,由題意,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【典例2】(2022·高二課時練習(xí))已知兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)為SKIPIF1<0.求:(1)過點(diǎn)SKIPIF1<0與SKIPIF1<0的直線方程;(2)過點(diǎn)SKIPIF1<0且與直線SKIPIF1<0平行的直線方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)設(shè)過直線SKIPIF1<0和SKIPIF1<0交點(diǎn)的直線方程為SKIPIF1<0,即SKIPIF1<0.①把點(diǎn)SKIPIF1<0代入方程①,化簡得SKIPIF1<0,解得SKIPIF1<0,所以過點(diǎn)P與Q的直線方程為SKIPIF1<0,即SKIPIF1<0.(2)由兩直線平行,得SKIPIF1<0,得SKIPIF1<0,所以所求直線的方程為SKIPIF1<0,即SKIPIF1<0.【變式1】(2022秋·高二課時練習(xí))過兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)和原點(diǎn)的直線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)過兩直線交點(diǎn)的直線系方程為SKIPIF1<0,代入原點(diǎn)坐標(biāo),得SKIPIF1<0,解得SKIPIF1<0,故所求直線方程為SKIPIF1<0,即SKIPIF1<0.故選:D.【變式2】(2022·高二單元測試)已知直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0).求證:直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,并求點(diǎn)SKIPIF1<0的坐標(biāo).【答案】證明見解析,SKIPIF1<0SKIPIF1<0【詳解】證明:原方程整理為SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0.【變式3】(2022·高二課時練習(xí))直線SKIPIF1<0經(jīng)過直線SKIPIF1<0的交點(diǎn),且與坐標(biāo)軸圍成的三角形是等腰直角三角形,求直線SKIPIF1<0的方程.【答案】SKIPIF1<0或SKIPIF1<0【詳解】解:設(shè)直線SKIPIF1<0方程為SKIPIF1<0SKIPIF1<0,化簡得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0與坐標(biāo)軸圍成的三角形是等腰直角三角形,SKIPIF1<0直線SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.代入并化簡得直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.所以所求的直線方程為SKIPIF1<0或SKIPIF1<0.題型07求兩點(diǎn)間的距離公式【典例1】(2023·江蘇·高二假期作業(yè))已知SKIPIF1<0,SKIPIF1<0兩點(diǎn)分別在兩條互相垂直的直線SKIPIF1<0和SKIPIF1<0上,且SKIPIF1<0線段的中點(diǎn)為SKIPIF1<0,則線段SKIPIF1<0的長為(
)A.11 B.10 C.9 D.8【答案】B【詳解】因?yàn)橹本€SKIPIF1<0和SKIPIF1<0互相垂直,所以SKIPIF1<0,解得SKIPIF1<0,所以線段AB的中點(diǎn)為SKIPIF1<0,所以設(shè)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:C【典例2】(2023·全國·高三專題練習(xí))已知直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0(
)A.10 B.13 C.16 D.20【答案】B【詳解】解:因?yàn)镾KIPIF1<0,所以直線SKIPIF1<0與直線SKIPIF1<0互相垂直且垂足為點(diǎn)SKIPIF1<0,又因?yàn)橹本€SKIPIF1<0過定點(diǎn)SKIPIF1<0,直線SKIPIF1<0,即SKIPIF1<0過定點(diǎn)SKIPIF1<0,所以在SKIPIF1<0中,SKIPIF1<0,故選:B.【變式1】(2023秋·高二課時練習(xí))已知SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,且SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)辄c(diǎn)C在x軸上,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,化簡可得:SKIPIF1<0,所以SKIPIF1<0.故選:D.【變式2】(2023·江蘇·高二假期作業(yè))直線SKIPIF1<0和直線SKIPIF1<0分別過定點(diǎn)SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0|________.【答案】SKIPIF1<0【詳解】將直線SKIPIF1<0的方程變形為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,將直線SKIPIF1<0的方程變形為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,所以,SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023·高三課時練習(xí))如圖,SKIPIF1<0是邊長為1的正三角形,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0上一點(diǎn),滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則線段SKIPIF1<0的長度為___________.【答案】SKIPIF1<0【詳解】解:以SKIPIF1<0為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸,建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型08距離公式的應(yīng)用【典例1】(2023春·江西·高三校聯(lián)考開學(xué)考試)費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個頂點(diǎn)距離之和最小的點(diǎn).當(dāng)三角形三個內(nèi)角均小于120°時,費(fèi)馬點(diǎn)與三個頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對的三角形三邊的張角相等且均為120°.根據(jù)以上性質(zhì),.則SKIPIF1<0的最小值為(
)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意得:SKIPIF1<0的幾何意義為點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離之和的最小值,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故三角形ABC為等腰直角三角形,,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,與SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,故點(diǎn)SKIPIF1<0到三角形三個頂點(diǎn)距離之和最小,即SKIPIF1<0取得最小值,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,同理得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故選:B【典例2】(2022秋·福建·高二校聯(lián)考期中)著名數(shù)學(xué)家華羅庚曾說過:“數(shù)形結(jié)合百般好,割裂分家萬事休.”事實(shí)上,有很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:SKIPIF1<0可以轉(zhuǎn)化為點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離,則SKIPIF1<0的最小值為(
).A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0,可以看作點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離之和,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點(diǎn)SKIPIF1<0,顯然當(dāng)SKIPIF1<0三點(diǎn)共線時,取到最小值,最小值為SKIPIF1<0間的距離SKIPIF1<0.故選:D.【典例3】(2022秋·甘肅嘉峪關(guān)·高二??计谥校┖瘮?shù)SKIPIF1<0的最小值是_____________.【答案】5【詳解】解:因?yàn)镾KIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0表示點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0,SKIPIF1<0兩點(diǎn)的距離之和,即SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0軸上的點(diǎn),則點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·全國·高三專題練習(xí))費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個頂點(diǎn)距離之和最小的點(diǎn).當(dāng)三角形三個內(nèi)角均小于SKIPIF1<0時,費(fèi)馬點(diǎn)與三個頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對的三角形三邊的張角相等均為SKIPIF1<0.根據(jù)以上性質(zhì),SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題SKIPIF1<0的幾何意義為點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離之和的最小值.由題可知,此時SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0軸上.故SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0的最小值為SKIPIF1<0故選:D【變式2】(2022秋·北京·高二北京工業(yè)大學(xué)附屬中學(xué)??计谥校┲麛?shù)學(xué)家華羅庚曾說過:“數(shù)無形時少直覺,形少數(shù)時難入微.”事實(shí)上,有很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:SKIPIF1<0可以轉(zhuǎn)化為平面上點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的距離.結(jié)合上述觀點(diǎn),可得SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,記點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)時,等號成立,即SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式3】(2023·江蘇·高二假期作業(yè))某同學(xué)在研究函數(shù)SKIPIF1<0的性質(zhì)時,聯(lián)想到兩點(diǎn)間的距離公式,從而將函數(shù)變形為SKIPIF1<0,求得SKIPIF1<0的最小值為________.【答案】SKIPIF1<0【詳解】由變形所得函數(shù)知:SKIPIF1<0表示x軸上的動點(diǎn)SKIPIF1<0到兩定點(diǎn)SKIPIF1<0的距離之和,∴當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0重合時,SKIPIF1<0有最小值為SKIPIF1<0.故答案為:SKIPIF1<0題型09求點(diǎn)到直線的距離【典例1】(2023·重慶·高二統(tǒng)考學(xué)業(yè)考試)點(diǎn)(1,1)到直線SKIPIF1<0的距離是(
)A.1 B.2 C.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,故選:A【典例2】(2023春·上海浦東新·高二統(tǒng)考期中)已知動點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為_________.【答案】2【詳解】因?yàn)镾KIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年甘肅省建筑安全員C證考試題庫
- 2025年河南省安全員《C證》考試題庫
- 貴陽學(xué)院《山水寫生》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州應(yīng)用科技學(xué)院《游戲制作與開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州鐵路職業(yè)技術(shù)學(xué)院《建筑力學(xué)(上)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025四川省安全員-C證考試(專職安全員)題庫附答案
- 2025云南省建筑安全員《C證》考試題庫及答案
- 6.4.2向量在物理中的應(yīng)用舉例【超級課堂】2022-2023學(xué)年高一數(shù)學(xué)教材配套教學(xué)精-品課件+分層練習(xí)人教A版2019必修第二冊
- 材料力學(xué)課件-動載荷
- 耳鼻喉學(xué)課件-咽的癥狀學(xué)
- 4s店管理的年度工作總結(jié)
- 中醫(yī)護(hù)理查房脅痛好
- 新概念英語第一冊1-72課測試
- 2024年二級造價(jià)師題庫(鞏固)
- 類風(fēng)濕關(guān)節(jié)炎課件
- 2022版《義務(wù)教育教學(xué)新課程標(biāo)準(zhǔn)》解讀課件
- 師德師風(fēng)防性侵知識講座
- 寫字樓項(xiàng)目風(fēng)險(xiǎn)評估報(bào)告
- 庫存周轉(zhuǎn)率與庫存周轉(zhuǎn)天數(shù)
- 絕緣子鹽密、灰密試驗(yàn)
- 農(nóng)業(yè)信息感知與傳輸技術(shù)
評論
0/150
提交評論