專題09排列組合二項式定理2017年高考數(shù)學試題分項版解析_第1頁
專題09排列組合二項式定理2017年高考數(shù)學試題分項版解析_第2頁
專題09排列組合二項式定理2017年高考數(shù)學試題分項版解析_第3頁
專題09排列組合二項式定理2017年高考數(shù)學試題分項版解析_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1.【2017課標1,理6】展開式中的系數(shù)為A.15 B.20 C.30 D.35【答案】C 【解析】試題分析:因為,則展開式中含的項為,展開式中含的項為,故前系數(shù)為,選C.【考點】二項式定理【名師點睛】對于兩個二項式乘積的問題,第一個二項式中的每項乘以第二個二項式的每項,分析好的項共有幾項,進行加和.這類問題的易錯點主要是未能分析清楚構(gòu)成這一項的具體情況,尤其是兩個二項式展開式中的不同.2.【2017課標3,理4】的展開式中33的系數(shù)為A. B. C.40 D.80【答案】C【解析】【考點】二項式展開式的通項公式【名師點睛】(1)二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項)和通項公式,建立方程來確定指數(shù)(求解時要注意二項式系數(shù)中n和r的隱含條件,即n,r均為非負整數(shù),且n≥r,如常數(shù)項指數(shù)為零、有理項指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項.(2)求兩個多項式的積的特定項,可先化簡或利用分類加法計數(shù)原理討論求解.3.【2017課標II,理6】安排3名志愿者完成4項工作,每人至少完成1項,每項工作由1人完成,則不同的安排方式共有()A.12種B.18種C.24種D.36種【答案】D【解析】試題分析:由題意可得,一人完成兩項工作,其余兩人每人完成一項工作,據(jù)此可得,只要把工作分成三份:有種方法,然后進行全排列即可,由乘法原理,不同的安排方式共有種方法。故選D。【考點】排列與組合;分步乘法計數(shù)原理【名師點睛】(1)解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進行分類;二是按事情發(fā)生的過程進行分步。具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)。4.【2017浙江,16】從6男2女共8名學生中選出隊長1人,副隊長1人,普通隊員2人組成4人服務隊,要求服務隊中至少有1名女生,共有______中不同的選法.(用數(shù)字作答)【答案】660【解析】【考點】排列組合的應用【名師點睛】本題主要考查分類計數(shù)原理與分步計數(shù)原理及排列組合的應用,有關(guān)排列組合的綜合問題,往往是兩個原理及排列組合問題交叉應用才能解決問題,解答這類問題理解題意很關(guān)鍵,一定多讀題才能挖掘出隱含條件.解題過程中要首先分清“是分類還是分步”、“是排列還是組合”,在應用分類計數(shù)加法原理討論時,既不能重復交叉討論又不能遺漏,這樣才能提高準確率.在某些特定問題上,也可充分考慮“正難則反”的思維方式.5.【2017浙江,13】已知多項式32=,則=________,=________.【答案】16,4【解析】【考點】二項式定理【名師點睛】本題主要考查二項式定理的通項與系數(shù),屬于簡單題.二項展開式定理的問題也是高考命題熱點之一,關(guān)于二項式定理的命題方向比較明確,主要從以下幾個方面命題:(1)考查二項展開式的通項公式;(可以考查某一項,也可考查某一項的系數(shù))(2)考查各項系數(shù)和和各項的二項式系數(shù)和;(3)二項式定理的應用.6.【2017天津,理14】用數(shù)字1,2,3,4,5,6,7,8,9組成沒有重復數(shù)字,且至多有一個數(shù)字是偶數(shù)的四位數(shù),這樣的四位數(shù)一共有___________個.(用數(shù)字作答)【答案】【解析】【考點】計數(shù)原理、排列、組合【名師點睛】計數(shù)原理包含分類計數(shù)原理(加法)和分步計數(shù)原理(乘法),組成四位數(shù)至多有一個數(shù)字是偶數(shù),包括四位數(shù)字有一個是偶數(shù)和四位數(shù)字全部是奇數(shù)兩類,利用加法原理計數(shù).7.【2017山東,理11】已知的展開式中含有項的系數(shù)是,則.【答案】【解析】試題分析:由二項式定理的通項公式,令得:,解得.【考點】二項式定理【名師點睛】根據(jù)二項式展開式的通項,確定二項式系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論