版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西省撫州市樂安縣重點達標名校中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(
)A.30°B.45°C.50°D.60°2.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°3.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°4.關于的分式方程解為,則常數(shù)的值為()A. B. C. D.5.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.6.已知y關于x的函數(shù)圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<27.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠18.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+99.計算結(jié)果是()A.0 B.1 C.﹣1 D.x10.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°11.小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數(shù)為28~35次的人數(shù)最多③有的人每周使用手機支付的次數(shù)在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④12.在平面直角坐標系中,點(2,3)所在的象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.14.分解因式:=______.15.如圖,經(jīng)過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.16.已知、為兩個連續(xù)的整數(shù),且,則=________.17.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.18.如圖是一個幾何體的三視圖(圖中尺寸單位:),根據(jù)圖中數(shù)據(jù)計算,這個幾何體的表面積為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.20.(6分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.21.(6分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結(jié)果進行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機抽取的獻血者人數(shù)為人,m=;補全上表中的數(shù)據(jù);若這次活動中該市有3000人義務獻血,請你根據(jù)抽樣結(jié)果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?22.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.求證:DF是BF和CF的比例中項;在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.23.(8分)如圖是根據(jù)對某區(qū)初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調(diào)查人數(shù);(2)補全條形統(tǒng)計圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀“名人傳記”的學生是多少人?24.(10分)某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天售量(n件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設銷售該產(chǎn)品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.25.(10分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.26.(12分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.27.(12分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準直角三角形的對應邊.2、D【解題分析】
根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【題目詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【題目點撥】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.3、C【解題分析】
根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【題目詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【題目點撥】本題考查了平行線性質(zhì)和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).4、D【解題分析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關于a的一次方程,解得a的值即可.【題目詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.5、C【解題分析】
由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【題目詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【題目點撥】本題考查了拋物線與x軸的交點以及二次函數(shù)的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.6、B【解題分析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.7、D【解題分析】試題解析:由題意可知:x-1≠0,
x≠1
故選D.8、B【解題分析】
收入和支出是兩個相反的概念,故兩個數(shù)字分別為正數(shù)和負數(shù).【題目詳解】收入13元記為+13元,那么支出9元記作-9元【題目點撥】本題主要考查了正負數(shù)的運用,熟練掌握正負數(shù)的概念是本題的關鍵.9、C【解題分析】試題解析:.故選C.考點:分式的加減法.10、B【解題分析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).11、B【解題分析】
根據(jù)直方圖表示的意義求得統(tǒng)計的總?cè)藬?shù),以及每組的人數(shù)即可判斷.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解.【題目詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結(jié)論錯誤;②每周使用手機支付次數(shù)為28~35次的人數(shù)最多,此結(jié)論正確;③每周使用手機支付的次數(shù)在35~42次所占比例為,此結(jié)論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結(jié)論錯誤;故選:B.【題目點撥】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統(tǒng)計的數(shù)據(jù)12、A【解題分析】
根據(jù)點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【題目詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【題目點撥】考核知識點:點的坐標與象限的關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解題分析】
連接把兩部分的面積均可轉(zhuǎn)化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對值即為的面積的2倍.【題目詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉(zhuǎn)化為規(guī)則圖形的面積是解題的關鍵.14、x(x+2)(x﹣2).【解題分析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用;因式分解.15、【解題分析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.16、11【解題分析】
根據(jù)無理數(shù)的性質(zhì),得出接近無理數(shù)的整數(shù),即可得出a,b的值,即可得出答案.【題目詳解】∵a<<b,a、b為兩個連續(xù)的整數(shù),
∴,
∴a=5,b=6,
∴a+b=11.
故答案為11.【題目點撥】本題考查的是估算無理數(shù)的大小,熟練掌握無理數(shù)是解題的關鍵.17、120【解題分析】
首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【題目詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【題目點撥】本題考查基本作圖、平行四邊形的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識18、【解題分析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點睛:考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解題分析】
(1)連接AC、A′C′,根據(jù)題意得到點A、A′、C′、C在同一條直線上,根據(jù)矩形的性質(zhì)得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據(jù)全等三角形的性質(zhì)證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據(jù)相似多邊形的性質(zhì)求出B′C′,根據(jù)勾股定理計算即可.【題目詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質(zhì)可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結(jié)論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經(jīng)過點O,由旋轉(zhuǎn)的性質(zhì)可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【題目點撥】本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、全等三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換的性質(zhì)、矩形的性質(zhì)是解題的關鍵.20、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解題分析】
(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【題目詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關鍵.在(2)中證得△ABN≌△HFE是解題的關鍵.21、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解題分析】【分析】(1)用AB型的人數(shù)除以它所占的百分比得到隨機抽取的獻血者的總?cè)藬?shù),然后用B型的人數(shù)除以抽取的總?cè)藬?shù)即可求得m的值;(2)先計算出O型的人數(shù),再計算出A型人數(shù),從而可補全上表中的數(shù)據(jù);(3)用樣本中A型的人數(shù)除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數(shù).【題目詳解】(1)這次隨機抽取的獻血者人數(shù)為5÷10%=50(人),所以m=×100=20,故答案為50,20;(2)O型獻血的人數(shù)為46%×50=23(人),A型獻血的人數(shù)為50﹣10﹣5﹣23=12(人),補全表格中的數(shù)據(jù)如下:血型ABABO人數(shù)1210523故答案為12,23;(3)從獻血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估計這3000人中大約有720人是A型血.【題目點撥】本題考查了扇形統(tǒng)計圖、統(tǒng)計表、概率公式、用樣本估計總體等,讀懂統(tǒng)計圖、統(tǒng)計表,從中找到必要的信息是解題的關鍵;隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).22、證明見解析【解題分析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.23、(1)該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)見解析,最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)估計最喜歡讀“名人傳記”的學生是4896人【解題分析】
(1)由“科普知識”人數(shù)及其百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以“漫畫叢書”的人數(shù)求得其人數(shù)即可補全圖形,用360°乘以“其他”人數(shù)所占比例可得;(3)總?cè)藬?shù)乘以“名人傳記”的百分比可得.【題目詳解】(1)840÷35%=2400(人),∴該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)2400×25%=600(人),∴該區(qū)抽樣調(diào)查最喜歡“漫畫叢書”的人數(shù)是600人,補全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學生是4896人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖能夠清楚地表示各部分所占的百分比.24、(1)1件;(2)第40天,利潤最大7200元;(3)46天【解題分析】試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式,然后把x=10代入即可;(2)設利潤為y元,則當1≤x<50時,y=﹣2x2+160x+4000;當50≤x≤90時,y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結(jié)論;(3)直接寫出在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.試題解析:解:(1)∵n與x成一次函數(shù),∴設n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關于x的一次函數(shù)表達式為n=-2x+200;當x=10時,n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版簡易離婚合同:雙方同意條款版B版
- 2024混凝土合同范本
- 2024消防樓梯工程合同
- 2025年土方收購合同范本:綠色環(huán)保建材供應鏈管理協(xié)議3篇
- 2024年特許經(jīng)營合同標的詳細解讀
- 2024棋牌室租賃管理服務合同3篇
- 2025年協(xié)議離婚快速辦理與離婚協(xié)議書合同3篇
- 2025年度體育用品品牌贊助合同3篇
- 2024年玻璃膠專利許可使用合同
- 二零二五年婚生女離婚財產(chǎn)分割與子女撫養(yǎng)責任合同3篇
- 16學時《中醫(yī)藥膳學》教學大綱(可編輯修改文本版)
- cecs31-2017鋼制電纜橋架工程設計規(guī)范
- 江蘇省鹽城市東臺市2022-2023學年四年級上學期期末語文試題
- 2024年華能黑龍江公司招聘筆試參考題庫含答案解析
- 居家適老化改造需求評估量化表
- 反意疑問句完
- 《大數(shù)據(jù)安全技術》課后題答案
- 肌理課件完整
- “約會”的DFMEA與PFMEA分析
- 教師朗誦稿《幸?!?7篇)
- 數(shù)據(jù)安全應急響應與處置
評論
0/150
提交評論