版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
中位線的教學(xué)設(shè)計【匯編五篇】教學(xué)設(shè)計是根據(jù)課程標(biāo)準(zhǔn)的要求和教學(xué)對象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計劃。引領(lǐng)財經(jīng)網(wǎng)下面是我為大家整理的中位線的教學(xué)設(shè)計【匯編五篇】,歡迎大家借鑒與參考,希望對大家有所幫助。
【篇一】中位線的教學(xué)設(shè)計
一、教材分析
本節(jié)在教材中的地位和作用。
三角形中位線是三角形中重要的線段,三角形中位線定理是一個重要性質(zhì)定理,它是前面已學(xué)過的平行線、全等三角形、平行四邊形等知識內(nèi)容的應(yīng)用和深化,在三角形中位線定理的證明及應(yīng)用中,處處滲透了化歸思想,它對拓展學(xué)生的思維有著積極的意義。
2、教學(xué)目標(biāo)
(一)知識目標(biāo)
(1)理解三角形中位線的定義;
(2)掌握三角形中位線定理及其應(yīng)用。
(二)能力目標(biāo)
通過對三角形中位線定理的猜想及證明,提高了同學(xué)們提出問題,分析問題及解決問題的能力。
(三)情感目標(biāo)
進(jìn)一步培養(yǎng)學(xué)生合作、交流的能力和團(tuán)隊精神,培養(yǎng)學(xué)生實(shí)事求是、善于觀察、勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度;同時滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3、重點(diǎn)與難點(diǎn)
重點(diǎn):理解并應(yīng)用三角形中位線定理。
難點(diǎn):三角形中位線定理的運(yùn)用。
二、教法分析
為了充分調(diào)動學(xué)生的積極性,使學(xué)生變被動學(xué)習(xí)為主動學(xué)習(xí),我采用了“引導(dǎo)探究”式的教學(xué)模式,在課堂教學(xué),我始終貫徹“教師為主導(dǎo),學(xué)生為主體,探究為主線”的教學(xué)思想,通過引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、比較、分析和總結(jié),使學(xué)生充分地動手、動口、動腦,參與教學(xué)全過程。
三、學(xué)法分析
本節(jié)課在實(shí)驗(yàn)操作的基礎(chǔ)上,以問題為核心,創(chuàng)設(shè)情景,通過教師的適時引導(dǎo),學(xué)生間、師生間的交流互動,啟迪學(xué)生的思維,讓學(xué)生掌握實(shí)驗(yàn)與觀察、分析與比較、討論與釋疑、概括與歸納、鞏固與提高等科學(xué)的學(xué)習(xí)方法;學(xué)會舉一反三,靈活轉(zhuǎn)換的學(xué)習(xí)方法,學(xué)會運(yùn)用化歸思想去解決問題。
四、教學(xué)過程設(shè)計
(一)回顧三角形中線概念,導(dǎo)入新課;
(二)寫出三角形中位線概念,定理;
(三)板書一種證明方法;
(四)出兩個應(yīng)用定理的例題,板書一題具體步驟;
(五)請一位同學(xué)演板寫書另一題具體步驟;
(六)總結(jié)學(xué)的內(nèi)容并布置作。
【篇二】中位線的教學(xué)設(shè)計
【教案背景】
1、面向?qū)W生:初二
2、課時:1
3、學(xué)科:數(shù)學(xué)
4、學(xué)生準(zhǔn)備:提前預(yù)習(xí)本節(jié)課的內(nèi)容,尺規(guī)和練習(xí)本。
【教材分析】
1、教材的地位和作用:
本節(jié)課是初二數(shù)學(xué)下冊第十八章18.1.2平行四邊形判定中的第三課時三角形中位線的內(nèi)容。三角形中位線既是前面已學(xué)過的平行線、全等三角形、平行四邊形性質(zhì)等知識內(nèi)容的應(yīng)用和深化,同時為進(jìn)一步學(xué)習(xí)梯形、任意四邊形的中位線打下基礎(chǔ),尤其是在判定兩直線平行和論證線段倍分關(guān)系時常常用到。在三角形中位線定理的證明及應(yīng)用中,處處滲透了歸納、類比、轉(zhuǎn)化等化歸思想,它是數(shù)學(xué)解題的重要思想方法,對拓展學(xué)生的思維有著積極的意義。
2、教學(xué)目標(biāo):
知識目標(biāo):
(1)理解三角形中位線的概念
(2)會證明三角形的中位線定理
(3)能應(yīng)用三角形中位線定理解決相關(guān)的問題;
過程與方法目標(biāo):
進(jìn)一步經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過程,發(fā)展推理論證的能力。體會合情推理與演繹推理在獲得結(jié)論的過程中發(fā)揮的作用。
情感目標(biāo)
畫一個任意三角形的中位線,用猜測和度量判斷中位線與第三邊的位置和數(shù)量關(guān)系,進(jìn)一步培養(yǎng)學(xué)生合作、交流的能力和團(tuán)隊精神,培養(yǎng)學(xué)生實(shí)事求是、善于觀察、勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度。
3、教學(xué)重難點(diǎn):
重點(diǎn):理解并應(yīng)用三角形中位線定理。
難點(diǎn):三角形中位線定理的證明和運(yùn)用。
【教學(xué)方法】
學(xué)生在前面的數(shù)學(xué)學(xué)習(xí)中具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),為了讓學(xué)生進(jìn)一步經(jīng)歷、猜測、證明的過程,我采?。簡l(fā)式教學(xué),在課堂教學(xué)。
【教學(xué)過程】
(一)回顧三角形中位線:
三角形一個頂點(diǎn)和對邊中點(diǎn)連結(jié)的線段
情感分析:讓學(xué)生首先通過原有知識三角形中線【端點(diǎn)特征】來引入三角形中位線更加好理解。
(二)概念提取:
像(EF、FD、DE)的線段的端點(diǎn)有什么特點(diǎn)?
情感分析:通過問題,讓學(xué)生去發(fā)現(xiàn)中位線端點(diǎn)的特點(diǎn),加深對中位線定義的提取和理解。
(三)引出三角形的中位線定義:
連接三角形兩邊中點(diǎn)的線段叫做中位線
情感分析:直接引出定義,讓學(xué)生更容易去理解中位線的含義并且對端點(diǎn)特征的理解??於唵吻乙锥?。
(四)概念對比記憶:
(1)相同之處——都和邊的中點(diǎn)有關(guān);
(2)不同之處:三角形中位線:中點(diǎn)連線;三角形中線:中點(diǎn)與端點(diǎn)(頂點(diǎn))連線
情感分析:通過對比記憶,加深兩者的區(qū)別與聯(lián)系,對中位線的理解進(jìn)一步提升。
(五)探究中位線的性質(zhì):
一般的三角形的中位線(DE)與第三邊(BC)存在哪些關(guān)系?
問題:①DE與BC存在怎么樣的位置和數(shù)量關(guān)系?【作圖觀察并猜想】
②結(jié)合圖形,請找出已知部分?要求證部分?
情感分析:對定義的理解后,方便對中位線性質(zhì)的一個探究,在探究過程中,讓學(xué)生通過畫任意三角形的一條中位線,并且通過學(xué)習(xí)工具(量角器、三角板、刻度尺和圓規(guī)),通過量同位角和三角板的推移來觀察猜測中位線與第三邊是平行的,再來通過刻度尺測量是它的二分之一。由于方法的局限性(誤差),所以探究用數(shù)學(xué)客觀的邏輯推理中位線的性質(zhì)。而且通過命題來找出已知和求證部分也是學(xué)生必須掌握的重難點(diǎn),通過這里也可以讓學(xué)生再次鞏固提升。
(六)證明中位線與第三邊的關(guān)系:
已知:在△ABC中,D、E分別是AB和AC中點(diǎn)
證明:
方法一:證明:延長DE到F,使EF=DE,連結(jié)CF.
方法二:證明:如圖,延長DE至F,使EF=DE,連接CD、AF、CF
情感分析:通過證明的方法,引導(dǎo)學(xué)生做輔助線時候的邏輯推理,多問學(xué)生為什么會想到這樣去做輔助線的。倍長線段是怎么想到的?為什么會想到連接CF?為什么會想到證明四邊形?引發(fā)學(xué)生思考。
(七)歸納:
三角形中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半。
用符號語言表示:∵DE是△ABC的中位線
∴
位置關(guān)系且數(shù)量關(guān)系
情感分析:通過剛剛的證明引導(dǎo)學(xué)生最后歸納出今天新課的重點(diǎn)內(nèi)容三角形中位線的性質(zhì),對數(shù)學(xué)符號語言的書寫格式進(jìn)行板書,讓學(xué)生更加理解和學(xué)會書寫格式要求。
(八)練習(xí)鞏固:
1、在△ABC中,E,D,F分別是AB,BC,CA的中點(diǎn),AB=6,AC=4,BC=5,則△EDF的周長是?
情感分析:通過簡單的運(yùn)用,能夠讓學(xué)生從簡單的基礎(chǔ)知識對中位線性質(zhì)的掌握,基本全班學(xué)生都能從中掌握。
變式1:在△ABC中,E,D,F分別是AB,BC,CA的中點(diǎn),AB=6,AC=4,則四邊形AEDF的周長是?
情感分析:通過變式1讓學(xué)生在原來題型的變化,掌握異題同解的思想方法,促進(jìn)學(xué)生對數(shù)學(xué)產(chǎn)生興趣。
2、如圖,在△ABC中,中線BE,CD交于點(diǎn)O、F、G分別是OB、OC的中點(diǎn)
求證:四邊形DFGE是平行四邊形
情感分析:證明平行四邊形的時候往往要用三角形去解決,所以引導(dǎo)學(xué)生用平行四邊形判定的時候一定要主要平行且相等,要學(xué)會在哪個三角形找出相應(yīng)的中位線來進(jìn)行運(yùn)用。
(九)鞏固提高:
3、已知:四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.
輔助線:當(dāng)有中位線三角形不完整時則需補(bǔ)完整三角形
情感分析:中點(diǎn)四邊形主要?dú)w類為怎么去做輔助線,引導(dǎo)學(xué)生在折線段中的中點(diǎn),找到相應(yīng)的三角形中位線,主要是攻克三角形中位線的做法。
【動點(diǎn)問題】4、如圖:長方形ABCD中R、P分別是DC、BC邊上的點(diǎn),E、F分別是AP、RP的中點(diǎn),當(dāng)P在BC上從B向C移動而R不動時,線段EF長()
A.逐漸增大
B.逐漸變小
C.不變
D.先增大后變少
情感分析:涉及到動點(diǎn)問題
首先要教會學(xué)生要學(xué)會找出
哪些是定點(diǎn),哪些是動點(diǎn)的問題,才能解決相應(yīng)的變化問題【通過動畫來演示后再進(jìn)行證明講解,讓學(xué)生有一個直觀的認(rèn)識后,再用客觀推理論證,培養(yǎng)嚴(yán)密的邏輯思維推理能力】。
5、如圖,點(diǎn)E、F、G、H分別是線段AB、BC、CD、AD的中點(diǎn),求證四邊形EFGH是平行四邊形
情感分析:學(xué)會做輔助線,引導(dǎo)學(xué)生構(gòu)成完整的三角形中位線,直接運(yùn)用定理。
6、已經(jīng)△ABC是銳角三角形,分別以AB、AC為邊向外側(cè)作兩個等邊△ABM和△CAN,D、E、F分別是MB、BC、CN的中點(diǎn),連結(jié)DE,F(xiàn)E
求證:DE=EF
情感分析:構(gòu)成完整的三角形中位線后,要證明線段相等,則需要證明三角形的全等,找到相應(yīng)的判定根據(jù)已知的條件,回顧全等三角形的證明。
7、已知:在ABCD中,E是CD的中點(diǎn),F(xiàn)是AE的中點(diǎn),F(xiàn)C與BE交于G.
求證:GF=GC.
證明:取BE的中點(diǎn)M,連接FM、CM
輔助線:已知中點(diǎn)與選取鄰邊中點(diǎn)的連線,
形成中位線
情感分析:通過前面例題的對比,很多學(xué)生會覺得連接兩點(diǎn)就可以構(gòu)成三角形的中位線,從而產(chǎn)生慣性思維,導(dǎo)致這題目解答不出,所以這方面可以通過這題進(jìn)行歸類輔助線的做法,已知中點(diǎn)與選取鄰邊中點(diǎn)的連線,形成中位線。
(十)總結(jié):
三角形的中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線
三角形的中位線定理【用途】:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半
教學(xué)反思:
本節(jié)課采用“問題—探究—發(fā)現(xiàn)—應(yīng)用”的啟發(fā)性教學(xué)模式,把大部分時間交給了學(xué)生去思考探究,讓學(xué)生畫出任意三角形的中位線去探究與第三邊的關(guān)系,從而讓學(xué)生動手動腦思考。而教師不是一位旁觀者,要積極的作為引導(dǎo)者、合,組織者。整節(jié)課教師注意提高學(xué)生的邏輯證明能力,強(qiáng)調(diào)直觀與抽象結(jié)合,以及邏輯思維推理能力的訓(xùn)練,讓學(xué)生經(jīng)歷了數(shù)學(xué)的快樂之旅。
【篇三】中位線的教學(xué)設(shè)計
一、設(shè)計思路
(一)教材分析
本課時所要探究的三角形中位線定理是學(xué)生以前從未接觸過的內(nèi)容。因此,在教學(xué)中通過創(chuàng)設(shè)有趣的情境問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,注重新舊知識的聯(lián)系,強(qiáng)調(diào)直觀與抽象的結(jié)合,鼓勵學(xué)生大膽猜想,大膽探索新穎獨(dú)特的證明方法和思路,讓學(xué)生充分經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”這一過程,體會合情推理與演繹推理在獲得結(jié)論的過程中發(fā)揮的作用,同時滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。通過本節(jié)課的學(xué)習(xí),應(yīng)使學(xué)生理解三角形中位線定理不僅指出了三角形的中位線與第三邊的位置關(guān)系和數(shù)量關(guān)系,而且為證明線段之間的位置關(guān)系和數(shù)量關(guān)系(倍分關(guān)系)提供了新的思路,從而提高學(xué)生分析問題、解決問題的能力。
(二)學(xué)情分析
本班學(xué)生基礎(chǔ)知識比較扎實(shí),接受新知識的意識較強(qiáng),對于本章有關(guān)平行四邊形的性質(zhì)和判定的內(nèi)容掌握較好,但知識遷移能力較差,數(shù)學(xué)思想方法運(yùn)用不夠靈活。因此,本節(jié)課著眼于基礎(chǔ),注重能力的培養(yǎng),積極引導(dǎo)學(xué)生首先通過實(shí)際操作獲得結(jié)論,然后借助于平行四邊形的有關(guān)知識進(jìn)行探索和證明。在此過程中注重知識的遷移同時重點(diǎn)滲透轉(zhuǎn)化、類比、歸納的數(shù)學(xué)思想方法,使學(xué)生的優(yōu)勢得以發(fā)揮,劣勢得以改進(jìn),從而提高學(xué)生的整體水平。
三)教學(xué)目標(biāo)
1、知識目標(biāo)
1)了解三角形中位線的概念。
2)掌握三角形中位線定理的證明和有關(guān)應(yīng)用。
2、能力目標(biāo)
1)經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過程,進(jìn)一步發(fā)展推理論證能力。
2)能夠用多種方法證明三角形的中位線定理,體會在證明過程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3)能夠應(yīng)用三角形的中位線定理進(jìn)行有關(guān)的論證和計算,逐步提高學(xué)生分析問題和解決問題的能力。
3、情感目標(biāo)
通過學(xué)生動手操作、觀察、實(shí)驗(yàn)、推理、猜想、論證等自主探索與合作交流的過程,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生真正體驗(yàn)知識的發(fā)生和發(fā)展過程,培養(yǎng)學(xué)生的創(chuàng)新意識。
(四)教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):三角形中位線的概念與三角形中位線定理的證明。
教學(xué)難點(diǎn):三角形中位線定理的多種證明。
(五)教學(xué)方法與學(xué)法指導(dǎo)
對于三角形中位線定理的引入采用發(fā)現(xiàn)法,在教師的引導(dǎo)下,學(xué)生通過探索、猜測等自主探究的方法先獲得結(jié)論再去證明。在此過程中,注重對證明思路的啟發(fā)和數(shù)學(xué)思想方法的滲透,提倡證明方法的多樣性,而對于定理的證明過程,則運(yùn)用多媒體演示。
(六)教具和學(xué)具的準(zhǔn)備
教具:多媒體、投影儀、三角形紙片、剪刀、常用畫圖工具。
學(xué)具:三角形紙片、剪刀、刻度尺、量角器。
二、教學(xué)過程
1、一道趣題——課堂因你而和諧
問題:你能將任意一個三角形分成四個全等的三角形嗎?這四個全等三角形能拼湊成一個平行四邊形嗎?(板書)
(這一問題激發(fā)了學(xué)生的學(xué)習(xí)興趣,學(xué)生積極主動地加入到課堂教學(xué)中,課堂氣氛變得較為和諧,課堂也鮮活起來了。)
學(xué)生想出了這樣的`方法:順次連接三角形每兩邊的中點(diǎn),看上去就得到了四個全等的三角形.
如圖中,將△ade繞e點(diǎn)沿順(逆)時針方向旋轉(zhuǎn)180°可得平行四邊形adfe。
問題:你有辦法驗(yàn)證嗎?
2、一種實(shí)驗(yàn)——課堂因你而生動
學(xué)生的驗(yàn)證方法較多,其中較為典型的方法如下:
生1:沿de、df、ef將畫在紙上的△abc剪開,看四個三角形能否重合。
生2:分別測量四個三角形的三邊長度,判斷是否可利用“sss”來判定三角形全等。
生3:分別測量四個三角形對應(yīng)的邊及角,判斷是否可用“sas、asa或aas”判定全等。
引導(dǎo):上述同學(xué)都采用了實(shí)驗(yàn)法,存在誤差,那么如何利用推理論證的方法驗(yàn)證呢?
3、一種探索——課堂因你而鮮活
師:把連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.(板書)
問題:三角形的中位線與第三邊有怎樣的關(guān)系呢?在前面圖1中你能發(fā)現(xiàn)什么結(jié)論呢?
(學(xué)生的思維開始活躍起來,同學(xué)之間開始互相討論,積極發(fā)言)
學(xué)生的結(jié)果如下:de∥bc,df∥ac,ef∥ab,ae=ec,bf=fc,bd=ad,
△ade≌△dbf≌△efc≌△def,de=bc,df=ac,ef=ab……
猜想:三角形的中位線平行于第三邊,且等于第三邊的一半。(板書)
師:如何證明這個猜想的命題呢?
生:先將文字問題轉(zhuǎn)化為幾何問題然后證明。
已知:de是abc的中位線,求證:de//bc、de=bc。
學(xué)生思考后教師啟發(fā):要證明兩條直線平行,可以利用“三線八角”的有關(guān)內(nèi)容進(jìn)行轉(zhuǎn)化,而要證明一條線段的長等于另一條線段長度的一半,可采用將較短的線段延長一倍,或者截取較長線段的一半等方法進(jìn)行轉(zhuǎn)化歸納。
(學(xué)生積極討論,得出幾種常用方法,大致思路如下)
生1:延長de到f使ef=de,連接cf
由△ade≌△cfe(sas)
得adfc從而bdfc
所以,四邊形dbcf為平行四邊形
得dfbc
可得debc(板書)
生2:將ade繞e點(diǎn)沿順(逆)時針方向旋轉(zhuǎn)180°,使得點(diǎn)a與點(diǎn)c重合,
即ade≌cfe,
可得bdcf,
得平行四邊形dbcf
得dfbc可得debc
生3:延長de到f使de=ef,連接af、cf、cd,可得adcf
得dbcf
得dfbc
可得debc
生4:利用△ade∽△abc且相似比為1:2
即
可得debc
師:還有其它不同方法嗎?
(學(xué)生面面相覷,學(xué)生5舉手發(fā)言)
4、一種創(chuàng)新——課堂因你而美麗
生5:過點(diǎn)d作df//bc交ac于點(diǎn)f
則adf∽abc
可得
又e是ac中點(diǎn)
可得
因此ae=af
即e點(diǎn)與f點(diǎn)重合
所以de//bc且de=bc
(筆者事先只局限于思考利用平行四邊形及三角形相似的性質(zhì)解決問題,沒想到學(xué)生的發(fā)言如此精彩,為整個課堂添加了不少亮色。)
師:很好,好極了!這種證法在數(shù)學(xué)中叫做同一法,連老師也沒想到。太棒了,大家要向生5學(xué)習(xí),用變化的、動態(tài)的、創(chuàng)新的觀點(diǎn)來看問題,努力去尋找更好更簡捷的方法。
5、一種思考——課堂因你而添彩
問題:三角形的中位線與中線有什么區(qū)別與聯(lián)系呢?
容易得出如下事實(shí):都是三角形內(nèi)部與邊的中點(diǎn)有關(guān)的線段.但中位線平行于第三邊,且等于第三邊的一半,三角形的一條中位線與第三邊上的中線互相平分.(學(xué)生交流、探索、思考、驗(yàn)證)
6、一種照應(yīng)——課堂因你而完整
問題:你能利用三角形中位線定理說明本節(jié)課開始提出的趣題的合理性嗎?(學(xué)生爭先恐后回答,課堂氣氛活躍)
7、一種應(yīng)用——課堂因你而升華
做一做:任意一個四邊形,將其四邊的中點(diǎn)依次連接起來所得新四邊形的形狀有什么特征?
(學(xué)生積極思考發(fā)言,師生共同完成此題目的最常見解法。)
已知:四邊形abcd,點(diǎn)e、f、g、h
分別是四邊的中點(diǎn),求證:四邊形efgh是平行四邊形。
證明:連結(jié)ac
∵e、f分別是ab、bc的中點(diǎn),
∴ef是abc的中位線,
∴ef∥ac且ef=ac,
同理可得:gh∥ac且gh=ac,
∴efgh,
∴四邊形efgh為平行四邊形。(板書)
其它解法由學(xué)生口述完成。
8、一種引申——課堂因你而讓人回味無窮
問題:如果將上例中的“任意四邊形”改為“平行四邊形、矩形、菱形、正方形”,結(jié)論又會怎么樣呢?(學(xué)生作為作業(yè)完成。)
9、一句總結(jié)——課堂因你而彰顯無窮魅力
學(xué)生總結(jié)本節(jié)內(nèi)容:三角形的中位線和三角形中位線定理。(另附作業(yè))
三、板書設(shè)計
三角形的中位線
1、問題
2、三角形中位線定義
3、三角形中位線定理證明
4、做一做
5、練習(xí)
6、小結(jié)
四、課后反思
本節(jié)課以“如何將一個任意三角形分為四個全等的三角形”這一問題為出發(fā)點(diǎn),以平行四邊形的性質(zhì)定理和判定定理為橋梁,探究了三角形中位線的基本性質(zhì)和應(yīng)用。在本節(jié)課中,學(xué)生親身經(jīng)歷了“探索—發(fā)現(xiàn)—猜想—證明”的探究過程,體會了證明的必要性和證明方法的多樣性。在此過程中,筆者注重新舊知識的聯(lián)系,同時強(qiáng)調(diào)轉(zhuǎn)化、類比、歸納等數(shù)學(xué)思想方法的恰當(dāng)應(yīng)用,達(dá)到了預(yù)期的目的。
【篇四】中位線的教學(xué)設(shè)計
教學(xué)建議
知識結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點(diǎn)是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.
教法建議
1.對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用
2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進(jìn)行演示知識的形成及證明過程,效果可能會更直接更易于理解
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過三角形一邊中點(diǎn)且平行另一邊的直線平分第三邊”
3.能夠應(yīng)用三角形中位線概念及定理進(jìn)行有關(guān)的論證和計算,進(jìn)一步提高學(xué)生的計算能力
4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力
5.通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣
二、教學(xué)設(shè)計
畫圖測量,猜想討論,啟發(fā)引導(dǎo).
三、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):三角形中位線的概論與三角形中位線性質(zhì).
2.教學(xué)難點(diǎn):三角形中位線定理的證明.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、常用畫圖工具
六、教學(xué)步驟
【復(fù)習(xí)提問】
1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).
2.說明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證,只要即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)
【引入新課】
1.三角形中位線:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形中位線.
(結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在中,畫出中線、中位線)
2.三角形中位線性質(zhì)
了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).
如圖所示,DE是的一條中位線,如果過D作,交AC于,那么根據(jù)平行線等分線段定理推論2,得是AC的中點(diǎn),可見與DE重合,所以.由此得到:三角形中位線平行于第三邊.同樣,過D作,且DEFC,所以DE.因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個命題有多種證明方法時,要選用比較簡捷的方法證明.
由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).
(l)延長DE到F,使,連結(jié)CF,由可得ADFC.
(2)延長DE到F,使,利用對角線互相平分的四邊形是平行四邊形,可得ADFC.
(3)過點(diǎn)C作,與DE延長線交于F,通過證可得ADFC.
上面通過三種不同方法得出ADFC,再由得BDFC,所以四邊形DBCF是平行四邊形,DFBC,又因DE,所以DE.
(證明過程略)
例求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.
(由學(xué)生根據(jù)命題,說出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.‘
分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.
證明:連結(jié)AC.
∴(三角形中位線定理).
同理,
∴GHEF
∴四邊形EFGH是平行四邊形.
【小結(jié)】
1.三角形中位線及三角形中位線與三角形中線的區(qū)別.
2.三角形中位線定理及證明思路.
七、布置作業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球蒸汽甲烷重整藍(lán)氫行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國寵物蔓越莓補(bǔ)充劑行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可調(diào)節(jié)軌道燈行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國核電用金屬管行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可見光波段高光譜成像(HSI)設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球玻璃煙斗行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國魚雷泵行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球I型陽極氧化服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025農(nóng)村買房子合同范本
- 工程汽車租賃合同范本
- 特教教師的教育科研
- ASME B16.5-16.47法蘭尺寸對照表
- 對外漢語詞匯教學(xué)(第二版)PPT完整全套教學(xué)課件
- 產(chǎn)品報價單(5篇)
- 康復(fù)護(hù)理練習(xí)題庫(附答案)
- 不銹鋼欄桿施工工藝
- 陜西演藝集團(tuán)有限公司招聘筆試題庫2023
- 小型餐飲店退股協(xié)議書
- 第九講 全面依法治國PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 兩淮礦區(qū)地面定向多分支水平井鉆進(jìn)作業(yè)技術(shù)規(guī)程
- vc約起來史上最全180個知名投資人聯(lián)系方式
評論
0/150
提交評論