版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)
據(jù)
與
實(shí)
證
研
究高
寧
博
士國(guó)泰安信息技術(shù)有限公司常務(wù)副總裁西安交通大學(xué)教授香港浸會(huì)大學(xué)商學(xué)院Honorary
Associate香港浸會(huì)大學(xué)公司管制與金融政策研究中心Research
Fellow什么是實(shí)證研究?––
以事實(shí)、實(shí)際情況和收集到的數(shù)據(jù)為對(duì)象,通過分析、計(jì)算、實(shí)驗(yàn)、研究,解釋和預(yù)測(cè)會(huì)計(jì)金融實(shí)
務(wù),回答“實(shí)際是什么”的問題。◎?qū)嵶C研究要求客觀、準(zhǔn)確、理性的描述現(xiàn)實(shí)◎?qū)嵶C研究以解釋現(xiàn)實(shí)為目的,認(rèn)為存在就是事實(shí)◎?qū)嵶C研究采用客觀中立的立場(chǎng)◎目前,在國(guó)際上,實(shí)證研究方法廣泛的應(yīng)用在經(jīng)濟(jì)、金融、會(huì)計(jì)等社會(huì)學(xué)科的研究中實(shí)證研究的發(fā)展與趨勢(shì)----實(shí)證經(jīng)濟(jì)學(xué)1953弗里德曼《實(shí)證經(jīng)濟(jì)學(xué)方法論》發(fā)展歷程----實(shí)證會(huì)計(jì)學(xué)1968
Ball,R.J.,P.Brown《An
Empirical
Evaluation
of
AccountingIncome
Numbers》《Journal
of
Accounting
Research》1986
Watts,Zimmerman《實(shí)證會(huì)計(jì)理論》趨勢(shì)由于金融市場(chǎng)每天都產(chǎn)生海量的數(shù)據(jù),這些數(shù)據(jù)又是從真實(shí)的交易
過程中產(chǎn)生的,這一特性使實(shí)證研究成為現(xiàn)代金融研究的主流話語”――Ross20世紀(jì)80年代《Accounting
Review》上實(shí)證性研究的論文占半數(shù)以上,有的年份還高達(dá)81%。現(xiàn)在實(shí)證研究已成為會(huì)計(jì),金融研究的主流。推動(dòng)實(shí)證研究發(fā)展的因素(William
Beaver)推動(dòng)實(shí)證研究發(fā)展的因素(William
Beaver)財(cái)務(wù)和經(jīng)濟(jì)學(xué)的發(fā)展1證券市場(chǎng)在經(jīng)濟(jì)中的地位2政府對(duì)證券市場(chǎng)的積極監(jiān)管,不斷推出新的課題3機(jī)構(gòu)投資者占股權(quán)比重的增大4計(jì)算機(jī)技術(shù)和數(shù)據(jù)庫的發(fā)展56學(xué)術(shù)刊物受重視程度的增強(qiáng)實(shí)
證
論
文
篇
數(shù)實(shí)證論文篇數(shù)類型1994199519961997199819992000200120022003200420052006實(shí)證研究論文13616120532538154764183011531751248235665043經(jīng)濟(jì)類實(shí)證論文8272115168188236276335432697102613991979實(shí)
證
的
要
素實(shí)證的要素結(jié)論推理檢驗(yàn)假設(shè)模型數(shù)據(jù)實(shí)證的要素?cái)?shù)據(jù):反映客觀狀況的數(shù)字材料。模型:刻畫客觀現(xiàn)象的數(shù)學(xué)形式。假設(shè):對(duì)所研究問題的結(jié)果或狀態(tài)的◆一種預(yù)期。檢驗(yàn):利用數(shù)據(jù),使用統(tǒng)計(jì)學(xué)知識(shí)對(duì)假設(shè)的統(tǒng)計(jì)顯著性作出判斷。推理:基于知識(shí)和經(jīng)驗(yàn)對(duì)假設(shè)檢驗(yàn)結(jié)果進(jìn)行推理。結(jié)論:利用假設(shè)檢驗(yàn)的結(jié)果,通過合情的邏輯推理得出的結(jié)論,觀點(diǎn)。實(shí)證研究方法步驟確立研究課題實(shí)
證
研
究
方
法
步
驟尋找相關(guān)理論提出命題假設(shè)設(shè)計(jì)研究方案搜集事實(shí)數(shù)據(jù)分析數(shù)據(jù)檢驗(yàn)命題得出研究結(jié)論金
融
實(shí)
證
研
究的
主
要
領(lǐng)
域投資組合選擇和資產(chǎn)定價(jià)–包括現(xiàn)代投資組合理論、資本資產(chǎn)定價(jià)理論、套利定價(jià)模型、期權(quán)定價(jià)模型、有效邊界、資本市場(chǎng)線、證券市場(chǎng)線等。資金成本和資本結(jié)構(gòu)理論–包括資金成本傳統(tǒng)理論、凈利理論和營(yíng)業(yè)凈利理論、權(quán)衡理論和融資偏好次序等。市場(chǎng)微觀結(jié)構(gòu)–研究交易價(jià)格發(fā)現(xiàn)過程與交易運(yùn)作機(jī)制,包括價(jià)格發(fā)現(xiàn)的模型和市場(chǎng)結(jié)構(gòu)與設(shè)計(jì)。行為金融學(xué)–研究投資者的心理、個(gè)人特征等因素與其交易行為之間的關(guān)系,包括個(gè)人信仰(過度自信、樂觀主義、代表性、保守主義、確認(rèn)偏誤、定位、記憶偏誤),個(gè)人偏好(展望理論、模糊規(guī)避)會(huì)
計(jì)
實(shí)
證
研
究的
主
要
領(lǐng)
域會(huì)計(jì)制度的選擇–研究企業(yè)會(huì)計(jì)制度的選擇與企業(yè)營(yíng)運(yùn)績(jī)效之間的關(guān)系盈余管理–研究企業(yè)管理當(dāng)局借助會(huì)計(jì)政策的選擇和會(huì)計(jì)估計(jì)的變更,尋求對(duì)自己有利結(jié)果的行為及其影響會(huì)計(jì)舞弊–研究公司采取偽造、掩飾的手法編造假賬損害股東權(quán)益、影響投資者做出正確投資決策的行為財(cái)務(wù)預(yù)測(cè)–研究如何根據(jù)財(cái)務(wù)活動(dòng)的歷史資料和現(xiàn)實(shí)情況對(duì)企業(yè)未來財(cái)務(wù)活動(dòng)進(jìn)行科學(xué)的預(yù)計(jì)和測(cè)算會(huì)計(jì)信息披露效應(yīng)–研究上市公司會(huì)計(jì)信息披露與公司股票價(jià)格之間的關(guān)系財(cái)務(wù)困境–研究企業(yè)陷于財(cái)務(wù)困境的特征及影響因素主要包括財(cái)務(wù)困境企業(yè)與非財(cái)務(wù)困境企業(yè)之間財(cái)務(wù)項(xiàng)目的分析會(huì)計(jì)信息的價(jià)值相關(guān)性–研究會(huì)計(jì)信息價(jià)值相關(guān)性對(duì)于會(huì)計(jì)準(zhǔn)則制證券市場(chǎng)監(jiān)管和投資者進(jìn)行決策的作用CSMAR
實(shí)
證論
文
舉
例文章研究了中國(guó)上市公司盈余公告時(shí)間選擇對(duì)股票交易量和未預(yù)期收益的影響。研究發(fā)現(xiàn),與較晚月份公告盈余的公司相比,較早月份進(jìn)行年度盈余公告的公司具有較強(qiáng)的股票交易量反應(yīng)。文章認(rèn)為愿意早些公告盈余的公司往往擁有利好的信息,并且這些較早的盈余公告含有更大的信息量,帶來較大的交易量增幅和未預(yù)期收益;較晚公告盈余的公司則往往擁有利差的信息,而且更容易被市場(chǎng)預(yù)期,因而帶來的交易量增幅和未預(yù)期收益也較小。作
者發(fā)表刊物摘
要題
目
InformationContent
and
Timing
ofEarnings
Announcements陳工孟
高
寧 鄭子云(香港理工大學(xué))Journal
of
Business
Finance
and
Accounting,
January
2005,
Vol
3Iss.
1-
2,
Pg.
65-95數(shù)
據(jù)
樣
本以1995年至2002年間發(fā)行A股或同時(shí)發(fā)行A,B股,在時(shí)間區(qū)間內(nèi)發(fā)表年度盈余公告的上市公司為研究樣本。樣本容量為3802。年份樣本數(shù)1月(%)2月(%)3月(%)4月(%)19952656(2.26)9(3.40)81(30.57)169(63.77)19962941(0.34)6(2.04)33(11.22)254(86.40)19973504(1.14)10(2.86)52(14.86)284(81.14)19985904(0.68)45(7.63)269(45.59)272(46.10)19993508(2.28)9(2.57)87(24.86)246(70.29)200053145(8.47)50(9.42)188(35.41)248(46.70)200166313(1.96)108(16.29)299(45.10)243(36.65)200275915(1.98)84(11.07)277(36.50)383(50.45)Total380296(2.52)321(8.45)1286(33.82)2099(55.21)CSMAR
總
體樣
本
容
量CSMAR
總
體
樣
本
容
量文
獻(xiàn)
回
顧和
假
設(shè)為什么選交易量而不是價(jià)格Bamber,
Barron
and
Stober
(1997)
suggest
that
trading
volume
is
relateto
the
magnitude
of
the
disagreement
among
investors
about
a
firm’searnings.Kim
and
Verrecchia
(1991a)
argue
that
price
changes
reflect
the
averagchange
in
the
aggregate
market’s
average
beliefs,
while
trading
volumis
the
sum
of
all
individual
investors’
trades,
which
also
depends
onprevailing
information
asymmetry
level
before
disclosure.
They
suggethat
although
all
investors
have
equal
access
to
public
pre-disclosureinformation,
they
acquire
private
pre-disclosure
information
withdifferent
degrees
of
precision.為什么選交易量而不是價(jià)格Atiase
and
Bamber
(1994)
and
Kross
et
al.
(1994)suggest
that
trading
volumeincreasing
function
of
the
degree
of
divergent
pre-disclosure
expectatiBamber
and
Cheon
(1995)
argue
that
the
reason
for
different
reactions
is
threactions
reflect
the
average
belief
revision,
while
trading
volume
ariindividual
investors
make
differential
belief
revisions.更
進(jìn)
一
步
的
分
析Kim
and
Verrecchia
(1994)
suggest
that
there
may
be
more
information
asymmeat
the
time
of
an
announcement
than
in
a
non-announcement
period.
This
isbecauseearnings
announcements
provide
information
that
allows
certain
tradersjudgements
about
a
firm’s
performance
that
are
superior
to
the
judgemenothertraders.Lobo
and
Tung
(1997)
find
that
the
trading
volume
around
quarterly
earningsannouncements
is
related
to
the
level
of
pre-disclosure
information
asymForfirms
with
a
high
level
of
pre-disclosure
information
asymmetry,
the
travolumeis
low
prior
to
and
after
the
announcement,
but
high
during
the
announceme更
進(jìn)
一
步
的
分
析Bamber(1986)
employs
the
divergence
of
earnings
forecasts
from
analysts’
forecasts
as
a
proxy
forinformation
asymmetry.
She
finds
thatthe
higher
the
information
asymmetry,
the
greater
the
abnormalreaction.In
this
study,
we
first
use
unexpected
earnings
as
a
control
variable
for
information
asymmetry.Earlier
announcements
should
generate
a
greater
surprise
in
the
market
because
it
is
more
difficult
toearlier
announcements
than
later
announcements.
Chambers
and
Penman
(1984)
argue
that
longerreportinglags
provide
the
opportunity
for
more
of
the
report’s
information
to
be
supplied
by
other
sourcethrough
search
activity
by
investors,
through
other
voluntary
disclosures
by
firms,
or
through
prthatare
supplied
in
the
earnings
releases
of
earlier
reporting
firms.Haw
et
al.
(1999)
study
the
Chinese
stock
market
and
findthat
firms
withgoodnews
publicize
their
annreports
earlier
thanthose
withbad
news,
and
loss-making
firms
are
the
lastto
release
their
annual
reThey
define
the
reporting
lag
as
the
number
of
days
from
the
fiscal
year-end
to
the
report
announcementEarlier
announcements
should
generate
a
greater
surprise
in
the
market
because
it
is
more
difficult
to
predict
earlier
announcements
than
later
announcements.
Chambersand
Penman
(1984)
argue
that
longer
reporting
lags
provide
the
opportunity
for
more
ofthe
report’s
information
to
be
supplied
by
other
sources,
either
through
search
actiby
investors,
through
other
voluntary
disclosures
by
firms,
or
through
predictions
tharesupplied
in
the
earnings
releases
of
earlier
reporting
firms.Haw
et
al.
(1999)
study
the
Chinese
stock
market
and
find
that
firms
with
good
newspublicize
theirannual
reports
earlier
than
those
with
bad
news,
and
loss-making
fi
are
the
last
to
release
theirannual
reports.
They
define
the
reporting
lag
as
thenumber
of
days
from
the
fiscal
year-end
to
thereport
announcement
date.更
進(jìn)
一
步
的
分
析1.
First,
normally
due
to
potential
insitrading
and
information
leakage,
it
ispossible
that
the
market
reaction
stalong
before
the
actual
announcements.Consequently,
we
employ
[-20,
2]and
[-20,
-3]
to
capture
the
possible
pevent
reaction.2.
Second,
in
the
relatively
efficient
markannouncement
effects
shouldnot
exist
inlong
event
window.
Therefore,
we
use
fourshort
symmetrical
event
windows
to
capturannouncement
effects.They
are
[-1,
+1],+2],
[-5,
+5],
and
[-7,
+7].時(shí)間窗口的確定[-20,
2][-20,
-3][-1,
+1][-2,
+2][-5,
+5][-7,
+7]共6個(gè)250
trading
days
from
day
–280
to
day
–31.A
time
gap
between
the
end
of
the
estimation
window
and
the
begiof
the
event
window
(i.e.
from
day
–30
to
day
–21)
is
employedusing
unusualpriceor
volume
data
(due
to
information
leaka-gemodel
estimation.d比較期間(beta期間)To
focus
our
analysis
on
the
number
of
tradable
days,
we
define
the
reporting
lagthe
number
of
working
days
from
the
fiscal
year-end
to
the
annual
release
date.–
1.
a
continuous
variable,
Announcement
Timing
Index
(ATI),
to
proxy
the
reporting
lag,which
isdefined
as
ATI
=
n/N,
where
n
is
the
nth
working
day
from
January
1
on
whichthe
earnings
announcement
is
made.N
is
the
total
number
of
working
days
in
the
periodfrom
January
1
to
April
30
inthe
event
year.三個(gè)不同的時(shí)間變量(TEA)定義三個(gè)不同的時(shí)間變量(TEA)定義the
unexpected
ATI
(UATI),
a
proxy
for
the
unexpected
reporting
lag,
is
def
as
the
difference
between
the
actual
and
expected
ATI
(the
expected
ATI
of
the
current
year
should
be
the
same
as
the
ATI
of
the
previous
year),
UATI
=
ATIt
–
ATIt-1.The
final
TEA
is
a
dummy
variable,
called
MAD,
with
a
value
of
1
for
Marchand
April
announcements
and
0
otherwise.Null
Hypothesis:
Firms
with
earlier
and
laterearnings
announcements
should
receive
similarabnormal
market
reaction.簡(jiǎn)單的假設(shè)Alternative
Hypothesis:
Firms
with
earlierearnings
announcements
should
receive
a
higherabnormalmaket
reaction.主
要
模
型■主
要
模
型tt異常交易量的決定因素多變量回歸模型CATV
(CAR)
=
0
+
1UEA
(UERW,
UEGM)+
2SIZE
+
3POWN
+
4
TEAt(UATI,
ATI,
MAD)+
5EXCH
+
iYEARi-5
+
jINDj-12
+18FORCATVPOWNUEAEXCHINDSIZETEAYEARFORCAR累積異常交易量累積異常收益率未預(yù)期盈余的絕對(duì)值人民幣計(jì)價(jià)的總資產(chǎn)的自然流通股所占百分比盈余公告時(shí)間交易所啞變量公告年的啞元變量行業(yè)啞變量外資股的啞變量Abnormal
Trading
Volume
around
EarningsAnnouncement
by
bi-monthly
sampleJanuaryand
February
(#
Obs
=
417)March
and
April
(#
Obs
=
3385)DayATVt-valueATVt-value-70.00151.640.00071.63-60.00242.39*0.00102.12*-50.00242.25*0.00091.86-40.00443.40**0.00071.61-30.00453.59**0.00112.38*-20.00554.41**0.00102.05*-10.00926.25**0.00193.78**00.01347.87**0.007112.02**+10.01297.63**0.007112.24**+
20.00915.62**0.00366.95**+
30.00554.05**0.00183.61**+
40.00322.64**0.00081.67+
50.00301.860.00061.31+
60.00181.440.00091.89+
70.00201.580.00102.02*IntervalCATVz-valueCATVz-value[-20,2]0.0841a13.32
**0.0380a15.67**[-20,-3]0.0340b7.57**0.0173b8.98**[-7,7]0.0808c14.62**0.0302c14.76**[-5,5]0.0731d14.94**0.0266d14.92**[-2,
2]0.0501e14.21**0.0207e16.57**[-1,
1]0.0355f12.56**0.0161f16.19**Abnormal
Trading
Volume
around
EarningsAnnouncement
by
bi-monthly
sample◎
Most
of
the
ATVs
for
all
monthly
samplesaresignificant,
whindicates
that
the
announcements
do
provide
information
tomarket.◎
The
magnitudesofthe
ATVs
and
CATVs
for
the
January
andFebruary
sample
are
much
greater than
those
for
the
March
anApril
sample.Lowest
40%
ofATI
SampleHighest
40%of
ATI
SampleDifferenceMean
CATVCATV30.02530.01410.0112cdCATV50.03370.01820.0155cdCATV110.04780.02290.0249cdCATV150.05450.02580.0287abCATV180.02650.0298-0.0033CATV230.06020.04790.0123Panel
A
:
Between
the
Lowest
40%
of
the
ATI
Sampleand
Highest
40%
of
the
ATI
SamplePositive
UATSampleNegative
UATSampleDifferenceMean
CATVCATV30.01060.0290-0.0184cCATV50.01320.0413-0.0281cCATV110.01600.0631-0.0471cCATV150.01660.0755-0.0589cCATV180.01100.0407-0.0297aCATV230.02420.0820-0.0578cPanel
B:
Between
the
Positive
UATI
Sampleand
Negative
UATI
SampleThe
lowest
40%
of
ATI
samples
demonstrates
a
significantly
greatvolumereaction
than
those
of
the
highest
40%
of
ATI
samples.The
negative
UATI
samples
demonstrate
a
significantly
greatervolume
reaction
than
those
of
the
positive
UATI
samples.earlier
announcements
provide
more
information
content
to
themarket
than
later
announcements
do.CATV3CATV5CATV11CATV15Intercept0
.15900
.24800
.47600
.7070(4
.12
)**(4
.28
)**(4
.40
)**(5
.16
)**UERW0
.00050
.00100
.00180
.0023(2
.42
)*(3
.19
)**(3
.25
)*(3
.21
)**SIZE-0
.0068-0
.0110-0
.0228-0
.0341(-3
.31
)**(-3
.57
)**(-3
.96
)**(-4
.67
)**POWN-0
.0052-0
.0105-0
.0085-0
.0362(-0
.43
)(-0
.57
)(-0
.25
)(-0
.83
)UATI-0
.0282-0
.0384-0
.0568-0
.0596(-3
.47
)**(-3
.14
)**(-2
.48
)*(-2
.06
)*EXCH0
.00820
.01590
.03360
.0392(2
.37
)*(3
.05
)**(3
.45
)**(3
.19
)**YEAR2-0
.0410-0
.0623-0
.1090-0
.1420(-5
.69
)**(-5
.74
)**(-5
.36
)**(-5
.53
)**YEAR30
.01170
.01070
.00780
.0057(1
.72
)(1
.04
)(0
.41
)(0
.24
)YEAR4-0
.0596-0
.0941-0
.1800-0
.2580–
Results
of
Regression
Model
for
CATVYEAR
5-0.0397-0.0604-0.1050-0.1550(-3.52)**(-3.56)**(-3.31)**(-3.88)**YEAR
6-0.0599-0.0893-0.1560-0.2180(-5.59)**(-5.54)**(-5.16)**(-5.71)**YEAR
7-0.0592-0.0877-0.1590-0.2230(-5.73)**(-5.63)**(-5.46)**(-6.07)**IND
10.05490.07530.15400.2190(2.84)**(2.59)**(2.83)**(3.19)**IND
20.0000-0.00190.0010-0.0011(-0.01)(-0.20)(0.06)(-0.04)IN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度離婚后子女監(jiān)護(hù)權(quán)與探望權(quán)約定合同2篇
- 二零二五年度門衛(wèi)巡邏車購置與維護(hù)合同5篇
- 二手房買賣合同模板2024年版版B版
- 二零二五年度牛糞有機(jī)肥原料采購合同范本4篇
- 二零二五年度家具原材料采購合同4篇
- 2025年度智能儲(chǔ)藏室與車位租賃買賣合同模板4篇
- 二零二五年度外匯貸款合同違約責(zé)任范本
- 2025年度房地產(chǎn)估價(jià)咨詢合同示范文本
- 2025年度民辦學(xué)校教師學(xué)術(shù)交流與合作合同4篇
- 二零二五年度外教兼職學(xué)術(shù)研究資助合同
- 新修訂《保密法》知識(shí)考試題及答案
- 電工基礎(chǔ)知識(shí)培訓(xùn)課程
- 住宅樓安全性檢測(cè)鑒定方案
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 市政道路及設(shè)施零星養(yǎng)護(hù)服務(wù)技術(shù)方案(技術(shù)標(biāo))
- 選擇性必修一 期末綜合測(cè)試(二)(解析版)2021-2022學(xué)年人教版(2019)高二數(shù)學(xué)選修一
- 《論語》學(xué)而篇-第一課件
- 《寫美食有方法》課件
- 學(xué)校制度改進(jìn)
- 各行業(yè)智能客服占比分析報(bào)告
- 年產(chǎn)30萬噸高鈦渣生產(chǎn)線技改擴(kuò)建項(xiàng)目環(huán)評(píng)報(bào)告公示
評(píng)論
0/150
提交評(píng)論