浙江省溫州市八校聯考2024屆中考數學押題卷含解析_第1頁
浙江省溫州市八校聯考2024屆中考數學押題卷含解析_第2頁
浙江省溫州市八校聯考2024屆中考數學押題卷含解析_第3頁
浙江省溫州市八校聯考2024屆中考數學押題卷含解析_第4頁
浙江省溫州市八校聯考2024屆中考數學押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市八校聯考2024屆中考數學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤2.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(3.剪紙是我國傳統(tǒng)的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.4.學完分式運算后,老師出了一道題“計算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的5.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.6.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④7.下列計算正確的是()A.(a)=a B.a+a=aC.(3a)?(2a)=6a D.3a﹣a=38.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.49.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形10.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)二、填空題(本大題共6個小題,每小題3分,共18分)11.定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點至多拐一次彎的路徑長稱為P,Q的“實際距離”如圖,若,,則P,Q的“實際距離”為5,即或環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具設A,B兩個小區(qū)的坐標分別為,,若點表示單車停放點,且滿足M到A,B的“實際距離”相等,則______.12.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.13.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.14.如圖,矩形ABCD中,AB=2,點E在AD邊上,以E為圓心,EA長為半徑的⊙E與BC相切,交CD于點F,連接EF.若扇形EAF的面積為43π,則15.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.16.的算術平方根為______.三、解答題(共8題,共72分)17.(8分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.18.(8分)如圖所示,已知,試判斷與的大小關系,并說明理由.19.(8分)解方程組:20.(8分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.21.(8分)如圖1所示,點E在弦AB所對的優(yōu)弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據學習函數的經驗,分別對函數y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點(x,y1),(x,y2),并畫出函數y1、y2的圖象;結合函數圖象,解決問題:①連接BE,則BE的長約為cm.②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.22.(10分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=5523.(12分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;24.解分式方程:=1

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【題目詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【題目點撥】本題是動點問題的函數圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數形結合的數學思想.2、C【解題分析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規(guī)律是解題關鍵.3、C【解題分析】【分析】根據軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【題目點撥】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.4、C【解題分析】試題解析:=====1.所以正確的應是小芳.故選C.5、B【解題分析】

先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【題目詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【題目點撥】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.6、C【解題分析】

根據正方形的判定定理即可得到結論.【題目詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【題目點撥】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.7、A【解題分析】

根據同底數冪的乘法的性質,冪的乘方的性質,積的乘方的性質,合并同類項的法則,對各選項分析判斷后利用排除法求解.【題目詳解】A.(a2)3=a2×3=a6,故本選項正確;B.a2+a2=2a2,故本選項錯誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項錯誤;D.3a﹣a=2a,故本選項錯誤.故選A.【題目點撥】本題考查了合并同類項,同底數冪的乘法,冪的乘方,積的乘方和單項式乘法,理清指數的變化是解題的關鍵.8、B【解題分析】

根據余角的性質,可得∠DCA與∠CBE的關系,根據AAS可得△ACD與△CBE的關系,根據全等三角形的性質,可得AD與CE的關系,根據線段的和差,可得答案.【題目詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【題目點撥】本題考查了全等三角形的判定與性質,解題的關鍵是熟練的掌握全等三角形的判定與性質.9、C【解題分析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.10、D【解題分析】

原式分解因式,判斷即可.【題目詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【題目點撥】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】

根據兩點間的距離公式可求m的值.【題目詳解】依題意有,解得,故答案為:1.【題目點撥】考查了坐標確定位置,正確理解實際距離的定義是解題關鍵.12、1.【解題分析】

先根據反比例函數比例系數k的幾何意義得到,再根據相似三角形的面積比等于相似比的平方,得到用含k的代數式表示3個陰影部分的面積之和,然后根據三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【題目詳解】解:根據題意可知,軸,設圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數綜合題.13、2﹣π.【解題分析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.14、1【解題分析】分析:設∠AEF=n°,由題意nπ×2詳解:設∠AEF=n°,由題意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四邊形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案為1.點睛:本題考查切線的性質、矩形的性質、扇形的面積公式、直角三角形10度角性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.15、【解題分析】

先求出球的總數,再根據概率公式求解即可.【題目詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.【題目點撥】本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現的結果數所有可能出現的結果數的商是解答此題的關鍵.16、【解題分析】

首先根據算術平方根的定義計算先=2,再求2的算術平方根即可.【題目詳解】∵=2,∴的算術平方根為.【題目點撥】本題考查了算術平方根,屬于簡單題,熟悉算數平方根的概念是解題關鍵.三、解答題(共8題,共72分)17、(1)45;(m,﹣m);(2)相似;(3)①;②.【解題分析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數綜合題;2.壓軸題;3.探究型;4.最值問題.18、.【解題分析】

首先判斷∠AED與∠ACB是一對同位角,然后根據已知條件推出DE∥BC,得出兩角相等.【題目詳解】解:∠AED=∠ACB.理由:如圖,分別標記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).

∴∠2=∠1.

∴EF∥AB(內錯角相等,兩直線平行).

∴∠3=∠ADE(兩直線平行,內錯角相等).

∵∠3=∠B(已知),

∴∠B=∠ADE(等量代換).

∴DE∥BC(同位角相等,兩直線平行).

∴∠AED=∠ACB(兩直線平行,同位角相等).【題目點撥】本題重點考查平行線的性質和判定,難度適中.19、【解題分析】

設=a,=b,則原方程組化為,求出方程組的解,再求出原方程組的解即可.【題目詳解】設=a,=b,則原方程組化為:,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即,解得:,經檢驗是原方程組的解,所以原方程組的解是.【題目點撥】此題考查利用換元法解方程組,注意要根據方程組的特點靈活選用合適的方法.解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.20、(1)證明見解析;(2).【解題分析】

(1)由切線的性質可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質可知∠B=∠OCB,由對頂角的性質可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【題目詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.21、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解題分析】

(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補全后的表中各組數值所對應的點(x,y1),(x,y2),畫出函數y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【題目詳解】(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補充完整如下表:(2)描出補全后的表中各組數值所對應的點(x,y1),(x,y2),畫出函數y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1cm,即點C與點E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6cm;當∠CBA=90°時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論