2024屆山東省青島43中重點中學中考押題數(shù)學預測卷含解析_第1頁
2024屆山東省青島43中重點中學中考押題數(shù)學預測卷含解析_第2頁
2024屆山東省青島43中重點中學中考押題數(shù)學預測卷含解析_第3頁
2024屆山東省青島43中重點中學中考押題數(shù)學預測卷含解析_第4頁
2024屆山東省青島43中重點中學中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省青島43中重點中學中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.2.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=63.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.4.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.45.一、單選題點P(2,﹣1)關于原點對稱的點P′的坐標是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)6.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的大致圖象可能是()A. B. C. D.7.如圖,在⊙O中,直徑AB⊥弦CD,垂足為M,則下列結論一定正確的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD8.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數(shù)法表示應為()A. B. C. D.9.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等10.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對二、填空題(本大題共6個小題,每小題3分,共18分)11.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數(shù)據(jù)如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8531865279316044005發(fā)芽頻率0.8500.7950.8150.7930.8020.801根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率為___________(精確到0.1).12.寫出一個平面直角坐標系中第三象限內(nèi)點的坐標:(__________)13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.14.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.15.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.16.分解因式:___.三、解答題(共8題,共72分)17.(8分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數(shù)關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.18.(8分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?19.(8分)如圖,已知矩形ABCD中,連接AC,請利用尺規(guī)作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)20.(8分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.21.(8分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關系和位置關系,并說明理由;(2)如圖2,當E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.22.(10分)如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數(shù)y=ax1+bx+c的圖象交于y軸上一點B,該二次函數(shù)的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數(shù)y=ax1+bx+c的解析式;(3)設一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.23.(12分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)24.已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

由題意,因為與反比例函數(shù)都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【題目詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關于直線對稱,與B關于直線對稱,,,點故選:A.【題目點撥】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關于直線對稱.2、D【解題分析】

運用正確的運算法則即可得出答案.【題目詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【題目點撥】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.3、B【解題分析】

設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.4、B【解題分析】

根據(jù)余角的性質(zhì),可得∠DCA與∠CBE的關系,根據(jù)AAS可得△ACD與△CBE的關系,根據(jù)全等三角形的性質(zhì),可得AD與CE的關系,根據(jù)線段的和差,可得答案.【題目詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【題目點撥】本題考查了全等三角形的判定與性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì).5、A【解題分析】

根據(jù)“關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”解答.【題目詳解】解:點P(2,-1)關于原點對稱的點的坐標是(-2,1).故選A.【題目點撥】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).6、D【解題分析】

根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【題目詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數(shù)y=ax數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項D符合.故選D【題目點撥】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.7、D【解題分析】

根據(jù)垂徑定理判斷即可.【題目詳解】連接DA.∵直徑AB⊥弦CD,垂足為M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故選D.【題目點撥】本題考查的是垂徑定理和圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關鍵.8、C【解題分析】分析:在實際生活中,許多比較大的數(shù),我們習慣上都用科學記數(shù)法表示,使書寫、計算簡便.解答:解:根據(jù)題意:2500000=2.5×1.故選C.9、C【解題分析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據(jù)此進行解答即可.【題目詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【題目點撥】本題考查了平行四邊形的定義以及性質(zhì),知道對角線平分平行四邊形是解題關鍵.10、C【解題分析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.2【解題分析】

仔細觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,從而得到結論.【題目詳解】∵觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,∴該玉米種子發(fā)芽的概率為1.2,故答案為1.2.【題目點撥】考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.12、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解題分析】

讓橫坐標、縱坐標為負數(shù)即可.【題目詳解】在第三象限內(nèi)點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.13、或.【解題分析】

①延長A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【題目詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【題目點撥】此題考查了勾股定理,三角形相似,關鍵在于做輔助線14、(0,).【解題分析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.15、-23≤y≤2【解題分析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【題目詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.16、【解題分析】

先提取公因式,再利用平方差公式分解因式即可.【題目詳解】故答案為:.【題目點撥】本題考查了分解因式,熟練掌握因式法、公式法、十字相乘法、分組分解法的區(qū)別,根據(jù)題目選擇合適的方法是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2).();(3).【解題分析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關于x的函數(shù)關系式是解答本題的關鍵.18、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解題分析】

先設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【題目詳解】設每臺電腦x萬元,每臺電子白板y萬元.根據(jù)題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【題目點撥】本題考查了二元一次方程組的應用,解題的關鍵是讀懂題意,找出之間的數(shù)量關系,列出二元一次方程組.19、詳見解析【解題分析】

利用尺規(guī)過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【題目詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【題目點撥】本題主要考查了尺規(guī)作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.20、(1);(2)2<m<;(1)m=6或m=﹣1.【解題分析】

(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問題.【題目詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.21、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解題分析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結論還成立,有兩種情況:①如圖1,當AC=CE時,設正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當AE=AC時,設正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運用性質(zhì)進行推擠是解此題的關鍵,用了分類討論思想,難度偏大.22、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解題分析】

(1)根據(jù)y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數(shù)y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據(jù)當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【題目詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論