2023-2024學年吉林省高中學校數學高一上期末質量檢測試題含解析_第1頁
2023-2024學年吉林省高中學校數學高一上期末質量檢測試題含解析_第2頁
2023-2024學年吉林省高中學校數學高一上期末質量檢測試題含解析_第3頁
2023-2024學年吉林省高中學校數學高一上期末質量檢測試題含解析_第4頁
2023-2024學年吉林省高中學校數學高一上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年吉林省高中學校數學高一上期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《九章算術》中“方田”章給出了計算弧田面積時所用的經驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結果保留整數)A.2 B.3C.4 D.52.17世紀德國著名的天文學家開普勒曾經這樣說過:“幾何學里有兩件寶,一個是勾股定理,另一個是黃金分割.如果把勾股定理比作黃金礦的話,那么可以把黃金分割比作鉆石礦.”黃金三角形有兩種,其中底與腰之比為黃金分割比的黃金三角形被認為是最美的三角形,它是一個頂角為的等腰三角形(另一種是頂角為108°的等腰三角形).例如,五角星由五個黃金三角形與一個正五邊形組成,如圖所示,在其中一個黃金中,.根據這些信息,可得()A. B.C. D.3.在下列圖象中,函數的圖象可能是A. B.C. D.4.函數y=xcosx+sinx在區(qū)間[–π,π]的圖象大致為()A. B.C. D.5.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為A.1010.1 B.10.1C.lg10.1 D.6.函數的部分圖象大致是()A. B.C. D.7.已知集合,集合,則集合A. B.C. D.8.點P從O點出發(fā),按逆時針方向沿周長為l的圖形運動一周,O、P兩點的距離y與點P所走路程x的函數關系如圖所示,那么點P所走的圖形是()A. B.C. D.9.函數f(x)=lnx+3x-4的零點所在的區(qū)間為()A. B.C. D.10.函數的圖象可能是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列命題:①存在實數,使;②函數是偶函數;③若是第一象限角,且,則;④是函數的一條對稱軸方程以上命題是真命題的是_______(填寫序號)12.=_______________.13.已知函數=,若對任意的都有成立,則實數的取值范圍是______14.已知,,則的值為___________.15.已知,,則________.(用m,n表示)16.已知函數,若關于的不等式在[0,1]上有解,則實數的取值范圍為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線及點.(1)證明直線過某定點,并求該定點的坐標;(2)當點到直線的距離最大時,求直線的方程.18.從某小學隨機抽取100多學生,將他們的身高(單位:)數據繪制成頻率分布直方圖(如圖).(1)求直方圖中的值;(2)試估計該小學學生的平均身高;(3)若要從身高在三組內的學生中,用分層抽樣的方法選取24人參加一項活動,則從身高在內的學生中選取的人數應為多少人?19.已知函數.(1)若在上單調遞增,求的取值范圍;(2)討論函數的零點個數.20.已知函數f(x)=(a,b為常數),且方程f(x)-x+12=0有兩個零點分別為3和4.求函數f(x)的解析式21.已知函數.(1)求函數的周期和單調遞減區(qū)間;(2)將的圖象向右平移個單位,得到的圖象,已知,,求值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先由已知條件求出,然后利用公式求解即可【詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A2、C【解析】先求出,再根據二倍角余弦公式求出,然后根據誘導公式求出.【詳解】由題意可得:,且,所以,所以,故選:C【點睛】本題考查了二倍角的余弦公式和誘導公式,屬于基礎題.3、C【解析】根據函數的概念,可作直線從左向右在定義域內移動,得到直線與曲線的交點個數,即可判定.【詳解】由函數的概念可知,任意一個自變量的值對應的因變量的值是唯一的,可作直線從左向右在定義域內移動,得到直線與曲線的交點個數是0或1,顯然A、B、D均不滿足函數的概念,只有選項C滿足.故選:C.【點睛】本題主要考查了函數概念,以及函數的圖象及函數的表示,其中解答中正確理解函數的基本概念是解答的關鍵,著重考查了數形結合思想的應用.4、A【解析】首先確定函數的奇偶性,然后結合函數在處的函數值排除錯誤選項即可確定函數的圖象.【詳解】因為,則,即題中所給的函數為奇函數,函數圖象關于坐標原點對稱,據此可知選項CD錯誤;且時,,據此可知選項B錯誤.故選:A.【點睛】函數圖象的識辨可從以下方面入手:(1)從函數的定義域,判斷圖象的左右位置;從函數的值域,判斷圖象的上下位置.(2)從函數的單調性,判斷圖象的變化趨勢.(3)從函數的奇偶性,判斷圖象的對稱性.(4)從函數的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項5、A【解析】由題意得到關于的等式,結合對數的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數學應用意識、信息處理能力、閱讀理解能力以及指數對數運算.6、A【解析】分析函數的奇偶性及其在上的函數值符號,結合排除法可得出合適的選項.【詳解】函數的定義域為,,函數為偶函數,排除BD選項,當時,,則,排除C選項.故選:A.7、C【解析】故選C8、C【解析】認真觀察函數的圖象,根據其運動特點,采用排除法,即可求解.【詳解】觀察函數的運動圖象,可以發(fā)現兩個顯著特點:①點運動到周長的一半時,最大;②點的運動圖象是拋物線,設點為周長的一半,如下圖所示:圖1中,因為,不符合條件①,因此排除選項A;圖4中,由,不符合條件①,并且的距離不是對稱變化的,因此排除選項D;另外,在圖2中,當點在線段上運動時,此時,其圖象是一條線段,不符合條件②,因此排除選項B.故選:C9、B【解析】根據函數零點的判定定理可得函數的零點所在的區(qū)間【詳解】解:函數在其定義域上單調遞增,(2),(1),(2)(1)根據函數零點的判定定理可得函數的零點所在的區(qū)間是,故選【點睛】本題考查求函數的值及函數零點的判定定理,屬于基礎題10、C【解析】函數即為對數函數,圖象類似的圖象,位于軸的右側,恒過,故選:二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】根據三角函數的性質,依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數,使得成立,錯誤;②函數,由于是偶函數,故是偶函數,正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數的一條對稱軸,故是函數的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④12、【解析】解:13、【解析】轉化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當,即時,在上為減函數,,在上為減函數,,所以,解得,結合可得.(2)當,即時,在上為減函數,,在上為減函數,在上為增函數,或,所以且,解得.(3)當,即時,,在上為減函數,,在上為增函數,,所以,解得,結合可知,不合題意.(4)當,即時,在上為減函數,在上為增函數,,在上為增函數,,此時不成立.(5)當時,在上為增函數,,在上為增函數,,所以,解得,結合可知,不合題意.綜上所述:.故答案為:14、【解析】利用和角正弦公式、差角余弦公式及同角商數關系,將目標式化為即可求值.【詳解】.故答案為:.15、【解析】根據指數式與對數式的互化,以及對數的運算性質,準確運算,即可求解.【詳解】因為,,所以,,所以,可得.故答案為:16、【解析】不等式在[0,1]上有解等價于,令,則.【詳解】由在[0,1]上有解,可得,即令,則,因為,所以,則當,即時,,即,故實數的取值范圍是故答案為【點睛】利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,定點坐標為;(2)15x+24y+2=0.【解析】(1)直線l的方程可化為a(2x+y+1)+b(-x+y-1)=0,由,即可解得定點;(2)由(1)知直線l恒過定點A,當直線l垂直于直線PA時,點P到直線l的距離最大,利用點斜式求直線方程即可.試題解析:(1)證明:直線l的方程可化為a(2x+y+1)+b(-x+y-1)=0,由,得,所以直線l恒過定點.(2)由(1)知直線l恒過定點A,當直線l垂直于直線PA時,點P到直線l的距離最大.又直線PA的斜率,所以直線l的斜率kl=-.故直線l的方程為,即15x+24y+2=0.18、(1)(2)(3)4人【解析】(1)根據頻率和為1,求出的值;(2)根據頻率分布直方圖,計算平均數即可(3)根據分層抽樣方法特點,計算出總人數以及應抽取的人數比即可;【小問1詳解】解:因為直方圖中的各個矩形的面積之和為1,所以有,解得;【小問2詳解】解:根據頻率分布直方圖,計算平均數為【小問3詳解】解:由直方圖知,三個區(qū)域內的學生總數為人,其中身高在內的學生人數為人,所以從身高在范圍內抽取的學生人數為人;19、(1)(2)當時,有一個零點;當時,且當時,有兩個零點,當時,有一個零點【解析】(1)由、都是單調遞增函數可得的單調性,利用單調性可得答案;(2)時有一個零點;當時,利用單獨單調性求得,分和討論可得答案.【小問1詳解】當時,單調遞增,當時,單調遞增,若在上單調遞增,只需,.【小問2詳解】當時,,此時,即,有一個零點;當時,,此時在上單調遞增,,若,即,此時有一個零點;若,即,此時無零點,故當時,有兩個零點,當時,有一個零點20、【解析】將3和4分別代入方程得,解得,進而可得.試題解析:將3和4分別代入方程-x+12=0得解得所以已知零點求函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論