2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年河南省商開二市高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是A.若m⊥n,n⊥α,m?β,則α⊥βB.若α∥β,n⊥α,m⊥β,則m∥nC.若m⊥n,n?α,m?β,則α⊥βD.若α∥β,n?α,m∥β,則m∥n2.設(shè),,,則,,的大小關(guān)系是()A. B.C. D.3.若,,,則A B.C. D.4.若存在正數(shù)x使成立,則a的取值范圍是A. B.C. D.5.如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是()A.相交 B.平行C.異面 D.以上都有可能6.已知,則下列說法正確的是()A.有最大值0 B.有最小值為0C.有最大值為-4 D.有最小值為-47.已知,且,則的最小值為A. B.C. D.8.已知函數(shù),若,則恒成立時的范圍是()A. B.C. D.9.下列四個函數(shù),最小正周期是的是()A. B.C. D.10.已知集合,集合,則圖中陰影部分表示的集合為()A. B.C. D.11.已知,則A.2 B.7C. D.612.若tanα=2,則的值為()A.0 B.C.1 D.二、填空題(本大題共4小題,共20分)13.如果滿足對任意實數(shù),都有成立,那么a的取值范圍是______14.已知函數(shù)的定義域為R,,且函數(shù)為偶函數(shù),則的值為________,函數(shù)是________函數(shù)(從“奇”、“偶”、“非奇非偶”、“既奇又偶”中選填一個).15.函數(shù)的定義域是__________.16.如圖,全集,A是小于10的所有偶數(shù)組成的集合,,則圖中陰影部分表示的集合為__________.三、解答題(本大題共6小題,共70分)17.旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為元.旅行團中的每個人的飛機票按以下方式與旅行社結(jié)算:若旅行團的人數(shù)不超過人時,飛機票每張元;若旅行團的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機票費減少元,但旅行團的人數(shù)最多不超過人.設(shè)旅行團的人數(shù)為人,飛機票價格元,旅行社的利潤為元.(1)寫出每張飛機票價格元與旅行團人數(shù)之間的函數(shù)關(guān)系式;(2)當(dāng)旅行團人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.18.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點(1)求證:PA∥平面BMD;(2)求證:AD⊥PB;(3)若AB=PD=2,求點A到平面BMD的距離19.已知函數(shù),,且.(1)求實數(shù)m的值,并求函數(shù)有3個不同的零點時實數(shù)b的取值范圍;(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)a的取值范圍.20.已知,求,的值.21.已知函數(shù),,且求實數(shù)m的值;作出函數(shù)的圖象并直接寫出單調(diào)減區(qū)間若不等式在時都成立,求t的取值范圍22.已知,向量,.(1)當(dāng)實數(shù)x為何值時,與垂直.(2)若,求在上的投影.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由題意得,A中,若,則或,又,∴不成立,∴A是錯誤的;B.若,則,又,∴成立,∴B正確;C.當(dāng)時,也滿足若,∴C錯誤;D.若,則或為異面直線,∴D錯誤,故選B考點:空間線面平行垂直的判定與性質(zhì).【方法點晴】本題主要考查了空間線面位置關(guān)系的判定與證明,其中熟記空間線面位置中平行與垂直的判定定理與性質(zhì)定理是解得此類問題的關(guān)鍵,著重考查了學(xué)生的空間想象能和推理能力,屬于基礎(chǔ)題,本題的解答中,可利用線面位置關(guān)系的判定定理和性質(zhì)定理判定,也可利用舉出反例的方式,判定命題的真假.2、A【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的圖像與性質(zhì),結(jié)合中間量法,即可比較大小.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)的圖像與性質(zhì)可知綜上可知,大小關(guān)系為故選:A【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的圖像與性質(zhì)的應(yīng)用,中間值法是比較大小常用方法,屬于基礎(chǔ)題.3、B【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性分別求出的范圍,即可得結(jié)果.【詳解】根據(jù)指數(shù)函數(shù)的單調(diào)性可得,根據(jù)對數(shù)函數(shù)的單調(diào)性可得,則,故選B.【點睛】本題主要考查對數(shù)函數(shù)的性質(zhì)、指數(shù)函數(shù)的單調(diào)性及比較大小問題,屬于中檔題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調(diào)性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應(yīng)用.4、D【解析】根據(jù)題意,分析可得,設(shè),利用函數(shù)的單調(diào)性與最值,即可求解,得到答案【詳解】根據(jù)題意,,設(shè),由基本初等函數(shù)的性質(zhì),得則函數(shù)在R上為增函數(shù),且,則在上,恒成立;若存在正數(shù)x使成立,即有正實數(shù)解,必有;即a的取值范圍為;故選D【點睛】本題主要考查了函數(shù)單調(diào)性的應(yīng)用,以及不等式的有解問題,其中解答中合理把不等式的有解問題轉(zhuǎn)化為函數(shù)的單調(diào)性與最值問題是解答的關(guān)鍵,著重考查分析問題和解答問題的能力,屬于中檔試題5、B【解析】因為G1,G2分別是△SAB和△SAC的重心,所以,所以.又因為M、N分別為AB、AC的中點,所以MN//BC,所以考點:線面平行的判定定理;線面平行的性質(zhì)定理;公理4;重心的性質(zhì)點評:我們要掌握重心性質(zhì):若G1為△SAB的重心,M為AB中點,則6、B【解析】由均值不等式可得,分析即得解【詳解】由題意,,由均值不等式,當(dāng)且僅當(dāng),即時等號成立故,有最小值0故選:B7、C【解析】運用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?()﹣1,化簡整理再由基本不等式即可得到最小值【詳解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2()﹣1=2(21≥3+47當(dāng)且僅當(dāng)x,y=4取得最小值7故選C【點睛】本題考查基本不等式的運用:求最值,注意乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題8、B【解析】利用條件f(1)<0,得到0<a<1.f(x)在R上單調(diào)遞減,從而將f(x2+tx)<f(x﹣4)轉(zhuǎn)化為x2+tx>x﹣4,研究二次函數(shù)得解.【詳解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定義域為R的奇函數(shù),∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax單調(diào)遞減,a﹣x單調(diào)遞增,∴f(x)在R上單調(diào)遞減不等式f(x2+tx)+f(4﹣x)<0化為:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案為B【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.9、C【解析】依次計算周期即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,正確;D選項:,錯誤.故選:C.10、B【解析】由陰影部分表示的集合為,然后根據(jù)集合交集的概念即可求解.【詳解】因為陰影部分表示的集合為由于.故選:B.11、A【解析】先由函數(shù)解析式求出,從而,由此能求出結(jié)果【詳解】,,,故選A【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值12、B【解析】將目標(biāo)是分子分母同時除以,結(jié)合正切值,即可求得結(jié)果.【詳解】==.故選:【點睛】本題考查齊次式的化簡和求值,屬基礎(chǔ)題.二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)題中條件先確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求解參數(shù)的取值范圍.【詳解】由對任意實數(shù)都成立可知,函數(shù)為實數(shù)集上的單調(diào)減函數(shù).所以解得.故答案為.14、①.7②.奇【解析】利用函數(shù)的奇偶性以及奇偶性定義即可求解.【詳解】函數(shù)為偶函數(shù),由,則,所以,所以,,定義域為,定義域關(guān)于原點對稱.因為,所以,所以函數(shù)為奇函數(shù).故答案為:7;奇15、{|且}【解析】根據(jù)函數(shù),由求解.【詳解】因為函數(shù),所以,解得,所以函數(shù)的定義域是{|且},故答案為:{|且}16、【解析】根據(jù)維恩圖可知,求,根據(jù)補集、交集運算即可.【詳解】,A是小于10的所有偶數(shù)組成的集合,,,由維恩圖可知,陰影部分為,故答案為:三、解答題(本大題共6小題,共70分)17、(1);(2)當(dāng)旅游團人數(shù)為或時,旅行社可獲得最大利潤為元.【解析】(1)討論和兩種情況,分別計算得到答案.(2),分別計算最值得到答案.【詳解】(1)依題意得,當(dāng)時,.當(dāng)時,;∴(2)設(shè)利潤為,則.當(dāng)且時,,當(dāng)且時,,其對稱軸為因為,所以當(dāng)或時,.故當(dāng)旅游團人數(shù)為或時,旅行社可獲得最大利潤為元.【點睛】本題考查了分段函數(shù)的應(yīng)用,意在考查學(xué)生的應(yīng)用能力和計算能力.18、(1)詳見解析;(2)詳見解析;(3).【解析】(1)設(shè)AC和BD交于點O,MO為三角形PAC的中位線可得MO∥PA,再利用直線和平面平行的判定定理,證得結(jié)論(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,證得AD⊥BD,可證AD⊥平面PBD,從而證得結(jié)論(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h【詳解】(1)證明:設(shè)AC和BD交于點O,則由底面ABCD是平行四邊形可得O為AC的中點由于點M為PC的中點,故MO為三角形PAC的中位線,故MO∥PA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,則AD=1,BD=AB?sin∠BAD=2,由于平面BMD經(jīng)過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離取CD得中點N,則MN⊥平面ABCD,且MNPD=1設(shè)點C到平面MBD的距離為h,則h為所求由AD⊥PB可得BC⊥PB,故三角形PBC為直角三角形由于點M為PC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,?()?MN?(BD×MO)×h,故有()×1?()?h,解得h【點睛】本題主要考查直線和平面平行的判定定理,直線和平面垂直的性質(zhì),用等體積法求點到平面的距離,體現(xiàn)了數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題19、(1)..(2)【解析】(1)由求得,作出函數(shù)圖象可知的范圍;(2)由函數(shù)圖象可知區(qū)間所屬范圍,列不等式示得結(jié)論.【詳解】(1)因為,所以.函數(shù)大致圖象如圖所示令,得.故有3個不同的零點.即方程有3個不同的實根.由圖可知.(2)由圖象可知,函數(shù)在區(qū)間和上分別單調(diào)遞增.因為,且函數(shù)在區(qū)間上為增函數(shù),所以可得,解得.所以實數(shù)a的取值范圍為.【點睛】本題考查由函數(shù)值求參數(shù),考查分段函數(shù)的圖象與性質(zhì).考查零點個數(shù)問題與轉(zhuǎn)化思想.屬于中檔題.20、見解析【解析】分角為第三和第四象限角兩種情況討論,結(jié)合同角三角函數(shù)的基本關(guān)系可得解.【詳解】因為,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,從而;如果是第四象限角,那么,.綜上所述,當(dāng)是第三象限角時,,;當(dāng)是第四象限角時,,.【點睛】本題考查利用同角三角函數(shù)的基本關(guān)系求值,考查計算能力,屬于基礎(chǔ)題.21、(1)(2)詳見解析,單調(diào)減區(qū)間為:;(3)【解析】由,代入可得m值;分類討論,去絕對值符號后根據(jù)二次函數(shù)表達式,畫出圖象由題意得在時都成立,可得在時都成立,解得即可【詳解】解:,由得即解得:;由得,即則函數(shù)的圖象如圖所示;單調(diào)減區(qū)間為:;由題意得在時都成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論