2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題含解析_第1頁
2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題含解析_第2頁
2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題含解析_第3頁
2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題含解析_第4頁
2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省東營市河口區(qū)一中高一數(shù)學第一學期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知,且,則的最小值為()A.3 B.4C.6 D.92.方程的解所在的區(qū)間是A. B.C. D.3.冪函數(shù)的圖象經(jīng)過點,則()A.是偶函數(shù),且在上單調(diào)遞增B.是偶函數(shù),且在上單調(diào)遞減C.是奇函數(shù),且在上單調(diào)遞減D.既不是奇函數(shù),也不是偶函數(shù),在上單調(diào)遞增4.函數(shù)的一條對稱軸是()A. B.C. D.5.已知函數(shù)是定義在R上的偶函數(shù),且,當時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.56.箱子中放有一雙紅色和一雙黑色的襪子,現(xiàn)從箱子中同時取出兩只襪子,則取出的兩只襪子正好可以配成一雙的概率為()A. B.C. D.7.已知是冪函數(shù),且在第一象限內(nèi)是單調(diào)遞減,則的值為()A.-3 B.2C.-3或2 D.38.已知是偶函數(shù),且在上是減函數(shù),又,則的解集為()A. B.C. D.9.已知,則的值為()A. B.C. D.10.函數(shù)的一個零點落在下列哪個區(qū)間()A.(0,1) B.(1,2)C.(2,3) D.(3,4)11.已知,若角的終邊經(jīng)過點,則的值為()A. B.C.4 D.-412.已知向量,則銳角等于A.30° B.45°C.60° D.75°二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對弧長為____14.滿足的集合的個數(shù)是______________15.化簡求值(1)化簡(2)已知:,求值16.命題“,使關(guān)于的方程有實數(shù)解”的否定是_________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),,設(1)求的值;(2)是否存在這樣的負實數(shù)k,使對一切恒成立,若存在,試求出k取值集合;若不存在,說明理由.18.已知是小于9的正整數(shù),,,求(1)(2)(3)19.已知函數(shù),,(1)求的解析式和最小正周期;(2)求在區(qū)間上的最大值和最小值20.已知函數(shù),且.(1)求實數(shù)a的值;(2)判斷函數(shù)在上的單調(diào)性,并證明.21.(1)利用函數(shù)單調(diào)性定義證明:函數(shù)是減函數(shù);(2)已知當時,函數(shù)的圖象恒在軸的上方,求實數(shù)的取值范圍.22.設分別是的邊上的點,且,,,若記試用表示.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】將變形為,再將變形為,整理后利用基本不等式可求最小值.【詳解】因為,故,故,當且僅當時等號成立,故的最小值為3.故選:A.【點睛】方法點睛:應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.2、C【解析】根據(jù)零點存在性定理判定即可.【詳解】設,,根據(jù)零點存在性定理可知方程的解所在的區(qū)間是.故選:C【點睛】本題主要考查了根據(jù)零點存在性定理判斷零點所在的區(qū)間,屬于基礎(chǔ)題.3、D【解析】設冪函數(shù)方程,將點坐標代入,可求得的值,根據(jù)冪函數(shù)的性質(zhì),即可求得答案.【詳解】設冪函數(shù)的解析式為:,將代入解析式得:,解得,所以冪函數(shù),所以既不是奇函數(shù),也不是偶函數(shù),且,所以在上單調(diào)遞增.故選:D.4、B【解析】由余弦函數(shù)的對稱軸為,應用整體代入法求得對稱軸為,即可判斷各項的對稱軸方程是否正確.【詳解】由余弦函數(shù)性質(zhì),有,即,∴當時,有.故選:B5、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結(jié)合零點的定義進行求解即可.【詳解】因為,所以函數(shù)的周期為,當時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C6、B【解析】先求出試驗的樣本空間,再求有利事件個數(shù),最后用概率公式計算即可.【詳解】兩只紅色襪子分別設為,,兩只黑色襪子分別設為,,這個試驗的樣本空間可記為,共包含6個樣本點,記為“取出的兩只襪子正好可以配成一雙”,則,包含的樣本點個數(shù)為2,所以.故選:B7、A【解析】根據(jù)冪函數(shù)的定義判斷即可【詳解】由是冪函數(shù),知,解得或.∵該函數(shù)在第一象限內(nèi)是單調(diào)遞減的,∴.故.故選:A.【點睛】本題考查了冪函數(shù)的定義以及函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題8、B【解析】根據(jù)題意推得函數(shù)在上是增函數(shù),結(jié)合,確定函數(shù)值的正負情況,進而求得答案.【詳解】是偶函數(shù),且在上是減函數(shù),又,則,且在上是增函數(shù),故時,,時,,故的解集是,故選:B.9、B【解析】在所求分式的分子和分母中同時除以,結(jié)合兩角差的正切公式可求得結(jié)果.【詳解】.故選:B.10、B【解析】求出、,由及零點存在定理即可判斷.【詳解】,,,則函數(shù)的一個零點落在區(qū)間上.故選:B【點睛】本題考查零點存在定理,屬于基礎(chǔ)題.11、A【解析】先通過終邊上點的坐標求出,然后代入分段函數(shù)中求值即可.【詳解】解:因為角的終邊經(jīng)過點所以所以所以故選A.【點睛】本題考查了任意角三角函數(shù)的定義,分段函數(shù)的計算求值,屬于基礎(chǔ)題.12、B【解析】因為向量共線,則有,得,銳角等于45°,選B二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】解直角三角形AOC,求出半徑AO,代入弧長公式求出弧長的值解:如圖:設∠AOB=2,AB=2,過點0作OC⊥AB,C為垂足,并延長OC交于D,則∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,從而弧長為α×r=2×=,故答案為考點:弧長公式14、4【解析】利用集合的子集個數(shù)公式求解即可.【詳解】∵,∴集合是集合的子集,∴集合的個數(shù)為,故答案為:.15、(1)(2)【解析】(1)利用誘導公式化簡即可;(2)先進行弦化切,把代入即可求解.【小問1詳解】.【小問2詳解】因為,所以.所以.又,所以.16、,關(guān)于的方程無實數(shù)解【解析】直接利用特稱命題的否定為全稱命題求解即可.【詳解】因為特稱命題的否定為全稱命題,否定特稱命題是,既要否定結(jié)論,又要改變量詞,所以命題“,使關(guān)于的方程有實數(shù)解”的否定為:“,關(guān)于的方程無實數(shù)解”.故答案為:,關(guān)于的方程無實數(shù)解三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)存在,.【解析】(1)由題可得,代入即得;(2)由題可得函數(shù),,為奇函數(shù)且在上單調(diào)遞減,構(gòu)造函數(shù),則可得恒成立,進而可得,對恒成立,即求.【小問1詳解】∵函數(shù),,∴,∴.【小問2詳解】∵,由,得,又在上單調(diào)遞減,在其定義域上單調(diào)遞增,∴在上單調(diào)遞減,又,∴為奇函數(shù)且單調(diào)遞減;∵,又函數(shù)在R上單調(diào)遞增,∴函數(shù)在R上單調(diào)遞減,又,∴函數(shù)為奇函數(shù)且單調(diào)遞減;令,則函數(shù)在上單調(diào)遞減,且為奇函數(shù),由,可得,即恒成立,∴,即,對恒成立,故,即,故存在負實數(shù)k,使對一切恒成立,k取值集合為.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是構(gòu)造奇函數(shù),從而問題轉(zhuǎn)化為,對恒成立,參變分離后即求.18、(1)(2)(3)【解析】(1)根據(jù)交集概念求解即可.(2)根據(jù)并集概念求解即可.(3)根據(jù)補集和并集概念求解即可.【小問1詳解】,,.【小問2詳解】,,.【小問3詳解】,,,.19、(1),;(2)最大值2,最小值【解析】(1)先將代入,結(jié)合求出函數(shù)解析式,再用公式求出最小正周期.(2)根據(jù),求出的范圍,再求出的范圍,即可得出在區(qū)間上的最大值和最小值.【詳解】解:(1)因為,,所以,所以,又因為,所以,故的解析式為,所以的最小正周期為.(2)因為,所以,所以,則,故在區(qū)間上的最大值2,最小值.【點睛】本題主要考查了三角函數(shù)的恒等變換的應用,三角函數(shù)的性質(zhì),注重對基礎(chǔ)知識的考查.20、(1)(2)增函數(shù),證明見解析【解析】(1)根據(jù),由求解;(2)利用單調(diào)性的定義證明.【小問1詳解】解:∵,且,∴,∴;【小問2詳解】函數(shù)在上是增函數(shù).任取,不妨設,則,,∵且,∴,,,∴,即,∴在上是增函數(shù).21、(1)略;(2)【解析】(1)根據(jù)單調(diào)性的定義進行證明即可得到結(jié)論;(2)將問題轉(zhuǎn)化為在上恒成立求解,即在上恒成立,然后利用換元法求出函數(shù)的最小值即可得到所求范圍【詳解】(1)證明:設,則,∵,∴,∴,∴,∴函數(shù)是減函數(shù)(2)由題意可得在上恒成立,∴在上恒成立令,因為,所以,∴在上恒成立令,,則由(1)可得上單調(diào)遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論