2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題含解析_第1頁
2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題含解析_第2頁
2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題含解析_第3頁
2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題含解析_第4頁
2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆陜西省西安市第七十中學數(shù)學高一上期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知函數(shù)在上的值域為R,則a的取值范圍是A. B.C. D.2.非零向量,,若點關于所在直線的對稱點為,則向量為A. B.C. D.3.在三角形中,若點滿足,則與的面積之比為()A. B.C. D.4.已知函數(shù),則函數(shù)的最小正周期為A. B.C. D.5.若圓錐的底面半徑為2cm,表面積為12πcm2,則其側面展開后扇形的圓心角等于()A. B.C. D.6.命題“,”的否定為A., B.,C., D.,7.已知集合,集合,則()A.0 B.C. D.8.已知圓與圓相離,則的取值范圍()A. B.C. D.9.若圓上有且僅有兩個點到直線的距離等于1,則半徑的取值范圍是()A. B.C. D.10.已知是第二象限角,,則()A. B.C. D.11.棱長為2的正方體的頂點都在同一球面上,則該球面的表面積為A. B.C. D.12.已知實數(shù)集為,集合,,則A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù),(1)______(2)若方程有4個實數(shù)根,則實數(shù)的取值范圍是______14.已知,則的最小值為___________15.若關于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.16.已知在區(qū)間上單調遞減,則實數(shù)的取值范圍是____________.三、解答題(本大題共6小題,共70分)17.已知函數(shù).(1)求函數(shù)的最大值及相應的取值;(2)方程在上有且只有一個解,求實數(shù)的取值范圍;(3)是否存在實數(shù)滿足對任意,都存在,使成立.若存在,求的取值范圍;若不存在,說明理由.18.已知函數(shù),兩相鄰對稱中心之間的距離為(1)求函數(shù)的最小正周期和的解析式.(2)求函數(shù)的單調遞增區(qū)間.19.已知函數(shù),()的最小周期為.(1)求的值及函數(shù)在上的單調遞減區(qū)間;(2)若函數(shù)在上取得最小值時對應的角度為,求半徑為3,圓心角為的扇形的面積.20.已知函數(shù).(1)求的對稱中心的坐標;(2)若,,求的值.21.(1)當,求的值;(2)設,求的值.22.如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分別為棱AB,BC的中點,M為棱AA1的中點(1)證明:A1B1⊥C1D;(2)若AA1=4,求三棱錐A﹣MDE的體積

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】利用分段函數(shù),通過一次函數(shù)以及指數(shù)函數(shù)判斷求解即可【詳解】解:函數(shù)在上的值域為R,當函數(shù)的值域不可能是R,可得,解得:故選A【點睛】本題考查分段函數(shù)的應用,函數(shù)的最值的求法,屬于基礎題.2、A【解析】如圖由題意點B關于所在直線的對稱點為B1,所以∠BOA=∠B1OA,所以又由平行四邊形法則知:,且向量的方向與向量的方向相同,由數(shù)量積的概念向量在向量方向上的投影是OM=,設與向量方向相同的單位向量為:,所以向量=2=2=,所以=.故選A.點睛:本題利用平行四邊形法則表示和向量,因為對稱,所以借助數(shù)量積定義中的投影及單位向量即可表示出和向量,解題時要善于借助圖像特征體現(xiàn)向量的工具作用.3、B【解析】由題目條件所給的向量等式,結合向量的線性運算推斷P、Q兩點所在位置,比較兩個三角形的面積關系【詳解】因為,所以,即,得點P為線段BC上靠近C點的三等分點,又因為,所以,即,得點Q為線段BC上靠近B點的四等分點,所以,所以與的面積之比為,選擇B【點睛】平面向量的線性運算要注意判斷向量是同起點還是收尾相連的關系再使用三角形法則和平行四邊形法則進行加減運算,借助向量的數(shù)乘運算可以判斷向量共線,及向量模長的關系4、C【解析】去絕對值符號,寫出函數(shù)的解析式,再判斷函數(shù)的周期性【詳解】,其中,所以函數(shù)的最小正周期,選擇C【點睛】本題考查三角函數(shù)最小正周期的判斷方法,需要對三角函數(shù)的解析式整理后,根據(jù)函數(shù)性質求得5、D【解析】利用扇形面積計算公式、弧長公式及其圓的面積計算公式即可得出【詳解】設圓錐的底面半徑為r=2,母線長為R,其側面展開后扇形的圓心角等于θ由題意可得:,解得R=4又2π×2=Rθ∴θ=π故選D【點睛】本題考查了扇形面積計算公式、弧長公式及其圓的面積計算公式,考查了推理能力與計算能力,屬于基礎題6、A【解析】特稱命題的否定是全稱命題,并將結論否定,即可得答案.【詳解】命題“,”的否定為“,”.故選:A.【點睛】本題考查特稱命題的否定的書寫,是基礎題.7、B【解析】由集合的表示方法以及交集的概念求解.【詳解】由題意,集合,,∴.故選:B8、D【解析】∵圓的圓心為,半徑為,圓的標準方程為,則又兩圓相離,則:,本題選擇D選項.點睛:判斷兩圓的位置關系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關系,一般不采用代數(shù)法9、C【解析】圓上有且僅有兩個點到直線的距離等于1,先求圓心到直線的距離,再求半徑的范圍【詳解】解:圓的圓心坐標,圓心到直線的距離為:,又圓上有且僅有兩個點到直線的距離等于1,滿足,即:,解得故半徑的取值范圍是,(如圖)故選:【點睛】本題考查直線與圓的位置關系,考查數(shù)形結合的數(shù)學思想,屬于中檔題10、B【解析】利用同角三角函數(shù)基本關系式求解.【詳解】因為是第二象限角,,且,所以.故選:B.11、A【解析】先求出該球面的半徑,由此能求出該球面的表面積【詳解】棱長為2的正方體的頂點都在同一球面上,該球面的半徑,該球面的表面積為故選A【點睛】本題考查球面的表面積的求法,考查正方體的外接球、球的表面積等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想,是基礎題12、C【解析】分析:先求出,再根據(jù)集合的交集運算,即可求解結果.詳解:由題意,集合,所以,又由集合,所以,故選C.點睛:本題主要考查了集合的混合運算,熟練掌握集合的交集、并集、補集的運算是解答的關鍵,著重考查了推理與運算能力.二、填空題(本大題共4小題,共20分)13、①-2②.【解析】先計算出f(1),再根據(jù)給定的分段函數(shù)即可計算得解;令f(x)=t,結合二次函數(shù)f(x)性質,的圖象,利用數(shù)形結合思想即可求解作答.【詳解】(1)依題意,,則,所以;(2)函數(shù)的值域是,令,則方程在有兩個不等實根,方程化為,因此,方程有4個實數(shù)根,等價于方程在有兩個不等實根,即函數(shù)的圖象與直線有兩個不同的公共點,在同一坐標系內作出函數(shù)的圖象與直線,而,如圖,觀察圖象得,當時,函數(shù)與直線有兩個不同公共點,所以實數(shù)的取值范圍是.故答案為:-2;14、【解析】根據(jù)基本不等式,結合代數(shù)式的恒等變形進行求解即可.【詳解】解:因為a>0,b>0,且4a+b=2,所以有:,當且僅當時取等號,即時取等號,故答案為:.15、【解析】根據(jù)一元二次不等式與二次函數(shù)的關系,可知只需判別式,利用所得不等式求得結果.【詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.16、【解析】根據(jù)復合函數(shù)單調性的判斷方法,結合對數(shù)函數(shù)的定義域,即可求得的取值范圍.【詳解】在區(qū)間上單調遞減由對數(shù)部分為單調遞減,且整個函數(shù)單調遞減可知在上單調遞增,且滿足所以,解不等式組可得即滿足條件的取值范圍為故答案為:【點睛】本題考查了復合函數(shù)單調性的應用,二次函數(shù)的單調性,對數(shù)函數(shù)的性質,屬于中檔題.三、解答題(本大題共6小題,共70分)17、(1)2,(2)或(3)存在,【解析】(1)由三角恒等變換化簡函數(shù),再根據(jù)正弦函數(shù)性質可求得答案;(2)將問題轉化為函數(shù)與函數(shù)在上只有一個交點.由函數(shù)的單調性和最值可求得實數(shù)的取值范圍;(3)由(1)可知,由已知得,成立,令,其對稱軸,分,,討論函數(shù)的最小值,建立不等式,求解即可.【小問1詳解】解:由得.令,解得,∴函數(shù)的最大值為2,此時;【小問2詳解】解:方程在上有且有一個解,即函數(shù)與函數(shù)在上只有一個交點.∵,∴.∵函數(shù)在上單調遞增,在上單調遞減,且,,.∴或;【小問3詳解】解:由(1)可知,∴.實數(shù)滿足對任意,都存在,使得成立,即成立,令,其對稱軸,∵,∴①當時,即,,∴;②當,即時,,∴;③當,即時,,∴.綜上可得,存在滿足題意的實數(shù),的取值范圍是.18、(1),(2)【解析】(1)根據(jù)相鄰對稱中心之間間隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求單調遞增區(qū)間.小問1詳解】兩相鄰對稱中心之間的距離為,的最小正周期,,解得:,;【小問2詳解】令,解得:,的單調遞增區(qū)間為.19、(1),減區(qū)間為(2)【解析】(1)根據(jù)最小正周期求得,根據(jù)三角函數(shù)單調區(qū)間的求法,求得在上的單調遞減區(qū)間.(2)根據(jù)三角函數(shù)最值的求法求得,根據(jù)扇形面積公式求得扇形的面積.【小問1詳解】由于函數(shù),()的最小周期為,所以,.,由得,所以的減區(qū)間為.【小問2詳解】,當時取得最小值,所以,對應扇形面積為20、(1),;(2).【解析】(1)利用輔助角公式及降冪公式將函數(shù)化為,再根據(jù)正弦函數(shù)的對稱中心即可得出答案;(2)由,求得,再利用兩角差的余弦公式即可得出答案.【詳解】解:(1)由,,得,,即的對稱中心的坐標為,.(2)由(1)知,令,則,所以,,則.21、(1);(2)【解析】(1)利用商數(shù)關系,化弦為切,即可得到結果;(2)利用誘導公式化簡,代入即可得到結果.【詳解】(1)因為,且,所以,原式=(2)∵,【點睛】本題考查三角函數(shù)的恒等變換,涉及到正余弦的齊次式(弦化切),誘導公式,屬于中檔題.22、(1)證明見解析(2)【解析】(1)通過證明AB⊥CD,AB⊥CC1,證明A1B1⊥平面CDC1,然后證明A1B1⊥C1D;(2)求出底面△DCE的面積,求出對應的高,即點到底面DCE的距離,然后求解四面體M-CDE的體積,由三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積得結論.【詳解】(1)證明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論