版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆天津市河東區(qū)數(shù)學高一上期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知全集,集合則下圖中陰影部分所表示的集合為()A. B.C. D.2.已知,那么()A. B.C. D.3.如圖來自古希臘數(shù)學家希波克拉底所研究的幾何圖形.此圖由三個半圓構成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為p1,p2,p3,則A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p34.中國茶文化博大精深,某同學在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關,某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學聯(lián)想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經(jīng)過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數(shù).該同學通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應大約冷卻()分鐘沖泡該綠茶(參考數(shù)據(jù):,)A.3 B.3.6C.4 D.4.85.在平行四邊形中,與相交于點,是線段中點,的延長線交于點,若,則等于()A. B.C. D.6.若函數(shù)滿足,,則下列判斷錯誤的是()A. B.C.圖象的對稱軸為直線 D.f(x)的最小值為-17.函數(shù)在區(qū)間的圖象大致是()A. B.C. D.8.不等式的解集為()A. B.C. D.9.中國古代數(shù)學的瑰寶《九章算術》中記載了一種稱為“曲池”的幾何體,該幾何體為上、下底面均為扇環(huán)形的柱體(扇環(huán)是指圓環(huán)被扇形截得的部分).現(xiàn)有一個如圖所示的曲池,其高為3,底面,底面扇環(huán)所對的圓心角為,弧AD長度為弧BC長度的3倍,且,則該曲池的體積為()A B.C. D.10.已知的值域為,那么的取值范圍是()A. B.C. D.11.下列函數(shù)中,值域為的偶函數(shù)是A. B.C. D.12.將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移個單位,得到的圖象對應的解析式是A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)的圖像恒過定點,若點也在函數(shù)的圖像上,則__________14.函數(shù)的零點個數(shù)為_________.15.給定函數(shù)y=f(x),設集合A={x|y=f(x)},B={y|y=f(x)}.若對于?x∈A,?y∈B,使得x+y=0成立,則稱函數(shù)f(x)具有性質P.給出下列三個函數(shù):①;②;③y=lgx.其中,具有性質P的函數(shù)的序號是_____16.不等式的解集為_____三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)(Ⅰ)求函數(shù)的最小正周期(Ⅱ)求函數(shù)在上的最大值與最小值18.已知(1)若a=2,求(2)已知全集,若,求實數(shù)a的取值范圍19.如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內接正方形PQRS為一水池,其余的地方種花.若,,設的面積為,正方形PQRS的面積為.(1)用a,表示和;(2)當a為定值,變化時,求的最小值,及此時的值.20.設集合,.(1)若,求;(2)若,求實數(shù)的取值集合.21.問題:是否存在二次函數(shù)同時滿足下列條件:,的最大值為4,______?若存在,求出的解析式;若不存在,請說明理由.在①對任意都成立,②函數(shù)的圖像關于軸對稱,③函數(shù)的單調遞減區(qū)間是這三個條件中任選一個,補充在上面問題中作答.注:如果選擇多個條件分別解答,按第一個解答計分.22.已知的頂點、、,試求:(1)求邊的中線所在直線方程;(2)求邊上的高所在直線的方程.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】根據(jù)題意,結合Venn圖與集合間的基本運算,即可求解.【詳解】根據(jù)題意,易知圖中陰影部分所表示.故選:C.2、B【解析】先利用指數(shù)函數(shù)單調性判斷b,c和1大小關系,再判斷a與1的關系,即得結果.【詳解】因為在單調遞增,,故,即,而,故.故選:B.3、A【解析】首先設出直角三角形三條邊的長度,根據(jù)其為直角三角形,從而得到三邊的關系,然后應用相應的面積公式求得各個區(qū)域的面積,根據(jù)其數(shù)值大小,確定其關系,再利用面積型幾何概型的概率公式確定出p1,p2,p3的關系,從而求得結果.【詳解】設,則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.點睛:該題考查的是面積型幾何概型的有關問題,題中需要解決的是概率的大小,根據(jù)面積型幾何概型的概率公式,將比較概率的大小問題轉化為比較區(qū)域的面積的大小,利用相關圖形的面積公式求得結果.4、B【解析】根據(jù)題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.5、A【解析】化簡可得,再由及選項可得答案【詳解】解:由題意得,,;、、三點共線,,結合選項可知,;故選:6、C【解析】根據(jù)已知求出,再利用二次函數(shù)的性質判斷得解.【詳解】解:由題得,解得,,所以,因為,所以選項A正確;所以,所以選項B正確;因為,所以選項D正確;因為的對稱軸為,所以選項C錯誤故選:C7、C【解析】判斷函數(shù)非奇非偶函數(shù),排除選項A、B,在計算時的函數(shù)值可排除選項D,進而可得正確選項.【詳解】因為,且,所以既不是奇函數(shù)也不是偶函數(shù),排除選項A、B,因為,排除選項D,故選:C【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.8、C【解析】將原不等式轉化為從而可求出其解集【詳解】原不等式可化為,即,所以解得故選:C9、B【解析】利用柱體體積公式求體積.【詳解】不妨設弧AD所在圓的半徑為R,弧BC所在圓的半徑為r,由弧AD長度為弧BC長度的3倍可知,,即.故該曲池的體積.故選:B10、C【解析】先求得時的值域,再根據(jù)題意,當時,值域最小需滿足,分析整理,即可得結果.【詳解】當,,所以當時,,因為的值域為R,所以當時,值域最小需滿足所以,解得,故選:C【點睛】本題考查已知函數(shù)值域求參數(shù)問題,解題要點在于,根據(jù)時的值域,可得時的值域,結合一次函數(shù)的圖像與性質,即可求得結果,考查分析理解,計算求值的能力,屬基礎題.11、D【解析】值域為的偶函數(shù);值域為R的非奇非偶函數(shù);值域為R的奇函數(shù);值域為的偶函數(shù).故選D12、C【解析】將函數(shù)y=sin(x-)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到y(tǒng)=sin(x-),再向左平移個單位得到的解析式為y=sin((x+)-)=y=sin(x-),故選C二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、1【解析】首先確定點A的坐標,然后求解函數(shù)的解析式,最后求解的值即可.【詳解】令可得,此時,據(jù)此可知點A的坐標為,點在函數(shù)的圖像上,故,解得:,函數(shù)的解析式為,則.【點睛】本題主要考查函數(shù)恒過定點問題,指數(shù)運算法則,對數(shù)運算法則等知識,意在考學生的轉化能力和計算求解能力.14、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:315、①③【解析】A即為函數(shù)的定義域,B即為函數(shù)的值域,求出每個函數(shù)的定義域及值域,直接判斷即可【詳解】對①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質P;對②,A=R,B=(0,+∞),當x>0時,不存在y∈B,使得x+y=0成立,即不具有性質P;對③,A=(0,+∞),B=R,顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質P;故答案為:①③【點睛】本題以新定義為載體,旨在考查函數(shù)的定義域及值域,屬于基礎題16、【解析】把不等式x2﹣2x>0化為x(x﹣2)>0,求出解集即可【詳解】不等式x2﹣2x>0可化為x(x﹣2)>0,解得x<0或x>2;∴不等式的解集為{x|x<0或x>2}故答案為【點睛】本題考查了一元二次不等式的解法與應用問題,是基礎題目三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)最大值1,最小值0【解析】(1)先利用二倍角正余弦公式以及配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質求最小正周期.(2)先根據(jù),得正弦函數(shù)取值范圍,再求函數(shù)最值試題解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:當且僅當時,取最小值,當且僅當,即時,取最大值,點睛:三角恒等變換的綜合應用主要是將三角變換與三角函數(shù)的性質相結合,通過變換把函數(shù)化為的形式再借助三角函數(shù)圖象研究性質,解題時注意觀察角、函數(shù)名、結構等特征18、(1);(2).【解析】(1)根據(jù)解絕對值不等式的方法,結合二次根式的性質、集合交集的定義進行求解即可;(2)根據(jù)解絕對值不等式的方法、集合補集的定義,結合子集的性質進行求解即可.【小問1詳解】當a=2時,因為,,所以;【小問2詳解】,因為,所以,因此有或,解得或,因此實數(shù)a的取值范圍為.19、(1);(2)當時,的值最小,最小值為【解析】(1)利用已知條件,根據(jù)銳角三角形中正余弦的利用,即可表示出和;(2)根據(jù)題意,將表示為的函數(shù),利用倍角公式對函數(shù)進行轉化,利用換元法,借助對勾函數(shù)的單調性,從而求得最小值.【詳解】(1)在中,,所以;設正方形的邊長為x,則,,由,得,解得;所以;(2),令,因為,所以,則,所以;設,根據(jù)對勾函數(shù)的單調性可知,在上單調遞減,因此當時,有最小值,此時,解得;所以當時,的值最小,最小值為.【點睛】本題考查倍角公式的使用,三角函數(shù)在銳角三角形中的應用,以及利用對勾函數(shù)的單調性求函數(shù)的最值,涉及換元法,屬綜合性中檔題.20、(1);(2).【解析】易得.(1)由;(2),然后利用分類討論思想對、和分三種情況進行討論.試題解析:集合(1)若,則,則(2),∴,當,即時,成立;當,即時,(i)當時,,要使得,,只要解得,所以的值不存在;(ii)當時,,要使得,只要解得綜上,的取值集合是考點:集合的基本運算.21、若選擇①,;若選擇②,;若選擇③,【解析】由可得,由所選的條件可得的對稱軸,再由的最大值為4,可得關于的方程,求解即可.【詳解】解:由,可得:,;若選擇①,對任意都成立,故的對稱軸為,即,又的最大值為4,且,解得:,故;若選擇②,函數(shù)圖像關于軸對稱,故的對稱軸為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課程設計書本打包機
- 非壽險精算課程設計論文
- 漫畫暑期主題課程設計
- 電梯安全課程設計
- 鎖的創(chuàng)新課程設計
- 課程設計卡通
- 種植櫻桃課程設計表
- 音樂節(jié)奏互動課程設計
- 語言模型訓練課程設計
- 自動飲料販賣機課程設計
- SY-T 5333-2023 鉆井工程設計規(guī)范
- 蔣詩萌小品《誰殺死了周日》臺詞完整版
- TB 10010-2008 鐵路給水排水設計規(guī)范
- 黑色素的合成與美白產(chǎn)品的研究進展
- 建筑史智慧樹知到期末考試答案2024年
- 金蓉顆粒-臨床用藥解讀
- 社區(qū)健康服務與管理教案
- 2023-2024年家政服務員職業(yè)技能培訓考試題庫(含答案)
- 2023年(中級)電工職業(yè)技能鑒定考試題庫(必刷500題)
- 藏歷新年文化活動的工作方案
- 果酒釀造完整
評論
0/150
提交評論