新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.6對數(shù)與對數(shù)函數(shù)(講)解析版_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.6對數(shù)與對數(shù)函數(shù)(講)解析版_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.6對數(shù)與對數(shù)函數(shù)(講)解析版_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.6對數(shù)與對數(shù)函數(shù)(講)解析版_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.6對數(shù)與對數(shù)函數(shù)(講)解析版_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題3.6對數(shù)與對數(shù)函數(shù)新課程考試要求1.理解對數(shù)的概念,掌握對數(shù)的運算,會用換底公式.2.理解對數(shù)函數(shù)的概念,掌握對數(shù)函數(shù)的圖象、性質(zhì)及應(yīng)用.3.了解對數(shù)函數(shù)的變化特征.核心素養(yǎng)培養(yǎng)學(xué)生數(shù)學(xué)抽象、數(shù)學(xué)運算(例1.2等)、邏輯推理(例7.8.9.10)、直觀想象(例3.4.5)等核心數(shù)學(xué)素養(yǎng).考向預(yù)測1.對數(shù)運算;2.對數(shù)函數(shù)的圖象和性質(zhì)及其應(yīng)用;3.除單獨考查外,在大題中考查對數(shù)運算、對數(shù)函數(shù)的圖象和性質(zhì)的應(yīng)用是熱點.常常與指數(shù)函數(shù)的性質(zhì)結(jié)合考查對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用,如比較函數(shù)值的大小、探究函數(shù)的圖象等.【知識清單】1.對數(shù)及其運算1.對數(shù)的概念(1)如果ax=N(a>0,且a≠1),那么x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù).(2)對數(shù)的性質(zhì):①負(fù)數(shù)和零沒對數(shù);②;=3\*GB3③;(3)對數(shù)恒等式alogaN=N2.對數(shù)的運算法則如果a>0且a≠1,M>0,N>0,那么①loga(MN)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③logaMn=nlogaM(n∈R);④logamMn=eq\f(n,m)logaM(m,n∈R,且m≠0).(3)對數(shù)的重要公式①換底公式:logbN=eq\f(logaN,logab)(a,b均大于零且不等于1);②logab=eq\f(1,logba),推廣logab·logbc·logcd=logad.=3\*GB3③logaab=b(a>0,且a≠1)2.對數(shù)函數(shù)及其性質(zhì)(1)概念:函數(shù)y=logax(a>0,且a≠1)叫做對數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).(2)對數(shù)函數(shù)的圖象與性質(zhì)a>10<a<1圖象性質(zhì)定義域:(0,+∞)值域:R當(dāng)x=1時,y=0,即過定點(1,0)當(dāng)x>1時,y>0;當(dāng)0<x<1時,y<0當(dāng)x>1時,y<0;當(dāng)0<x<1時,y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)3.反函數(shù)對數(shù)函數(shù)y=logax(a>0,且a≠1)和指數(shù)函數(shù)y=ax(a>0,且a≠1)互為反函數(shù),它們的圖象關(guān)于直線y=x對稱.【考點分類剖析】考點一:對數(shù)的化簡、求值【典例1】(2021·江西高三其他模擬(文))若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由指數(shù)與對數(shù)關(guān)系可表示出SKIPIF1<0,根據(jù)對數(shù)運算法則化簡可求得結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0.故選:B.【典例2】(2020·全國高考真題(理))已知55<84,134<85.設(shè)a=log53,b=log85,c=log138,則()A.a(chǎn)<b<c B.b<a<c C.b<c<a D.c<a<b【答案】A【解析】由題意可知、、,,;由,得,由,得,,可得;由,得,由,得,,可得.綜上所述,.故選:A.【規(guī)律方法】1.對數(shù)性質(zhì)在計算中的應(yīng)用(1)對數(shù)運算時的常用性質(zhì):logaa=1,loga1=0.(2)使用對數(shù)的性質(zhì)時,有時需要將底數(shù)或真數(shù)進(jìn)行變形后才能運用;對于多重對數(shù)符號的,可以先把內(nèi)層視為整體,逐層使用對數(shù)的性質(zhì).2.對數(shù)運算的一般思路(1)拆:首先利用冪的運算把底數(shù)或真數(shù)進(jìn)行變形,化成分?jǐn)?shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后利用對數(shù)運算性質(zhì)化簡合并.(2)合:將對數(shù)式化為同底數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算性質(zhì),轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪的運算.【變式探究】1.(2021·浙江高三其他模擬)已知實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】先利用指數(shù)式與對數(shù)式的互化關(guān)系表示出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,進(jìn)而得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再根據(jù)換底公式和對數(shù)的運算法則即可得結(jié)果.【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:C2.【多選題】(2021·遼寧高三月考)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】先判斷SKIPIF1<0,即可判斷A;利用SKIPIF1<0判斷B;利用B的結(jié)論判斷C;利用C的結(jié)論判斷D.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,即A不正確;因為SKIPIF1<0,所以SKIPIF1<0,即B正確;由SKIPIF1<0可知,SKIPIF1<0,C正確;由SKIPIF1<0可知,SKIPIF1<0,則SKIPIF1<0,即D正確.故選:BCD.【易錯提醒】(1)對數(shù)的運算性質(zhì)以及有關(guān)公式都是在式子中所有的對數(shù)符號有意義的前提下才成立的,不能出現(xiàn)log212=log2[(-3)×(-4)]=log2(-3)+log2(-4)的錯誤.(2)利用換底公式將不同底的對數(shù)式轉(zhuǎn)化成同底的對數(shù)式,要注意換底公式的正用、逆用及變形應(yīng)用.考點二:對數(shù)函數(shù)的概念與圖象【典例3】(2019浙江高考真題)在同一直角坐標(biāo)系中,函數(shù)且的圖象可能是()A. B.C. D.【答案】D【解析】當(dāng)時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當(dāng)時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【典例4】(2020·上海高一課時練習(xí))函數(shù)與函數(shù)在同一坐標(biāo)系的圖像只可能是()A. B.C. D.【答案】C【解析】當(dāng)時,對數(shù)函數(shù)為增函數(shù),當(dāng)時函數(shù)的值為負(fù).無滿足條件的圖像.當(dāng)時,對數(shù)函數(shù)為減函數(shù),當(dāng)時函數(shù)的值為正.C滿足.故選:C【典例5】(2021·浙江金華市·高三期末)在同直角坐標(biāo)系中,SKIPIF1<0與SKIPIF1<0的圖象可能是()A. B.C. D.【答案】A【解析】利用函數(shù)SKIPIF1<0的單調(diào)性排除選項,以及根據(jù)函數(shù)SKIPIF1<0的圖象判斷SKIPIF1<0,再利用函數(shù)SKIPIF1<0的對稱性排除選項.【詳解】函數(shù)SKIPIF1<0的單調(diào)性與SKIPIF1<0的單調(diào)性一致,兩段區(qū)間都是單調(diào)遞增,故排除BC,AD選項中,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0關(guān)于點SKIPIF1<0對稱,因為SKIPIF1<0,故排除D.故選:A【總結(jié)提升】1.對數(shù)函數(shù)的解析式同時滿足:①對數(shù)符號前面的系數(shù)是1;②對數(shù)的底數(shù)是不等于1的正實數(shù)(常數(shù));③對數(shù)的真數(shù)僅有自變量x.2.(1)不管a>1還是0<a<1,底大圖低;(2)在第一象限內(nèi),依圖象的分布,逆時針方向a逐漸變小,即a的值越小,圖象越靠近y軸.3.熟記函數(shù)圖象的分布規(guī)律,就能在解答有關(guān)對數(shù)圖象的選擇、填空題時,靈活運用圖象,數(shù)形結(jié)合解決.4.對數(shù)值logax的符號(x>0,a>0且a≠1)規(guī)律:“同正異負(fù)”.(1)當(dāng)0<x<1,0<a<1或x>1,a>1時,logax>0,即當(dāng)真數(shù)x和底數(shù)a同大于(或小于)1時,對數(shù)logax>0,即對數(shù)值為正數(shù),簡稱為“同正”;(2)當(dāng)0<x<1,a>1或x>1,0<a<1時,logax<0,即當(dāng)真數(shù)x和底數(shù)a中一個大于1,而另一個小于1時,也就是說真數(shù)x和底數(shù)a的取值范圍“相異”時,對數(shù)logax<0,即對數(shù)值為負(fù)數(shù),簡稱為“異負(fù)”.因此對數(shù)的符號簡稱為“同正異負(fù)”.5.指數(shù)型、對數(shù)型函數(shù)的圖象與性質(zhì)的討論,常常要轉(zhuǎn)化為相應(yīng)指數(shù)函數(shù),對數(shù)函數(shù)的圖象與性質(zhì)的問題.【變式探究】1.(2019·四川省眉山第一中學(xué)高三月考(文))函數(shù)y=ax2+bx與y=A.B.C.D.【答案】D【解析】對于A、B兩圖,|ba|>1,而ax2+bx=0的兩根為0和?ba,且兩根之和為?ba,由圖知0<?ba2.(2021·四川高三三模(理))函數(shù)SKIPIF1<0及SKIPIF1<0,則SKIPIF1<0及SKIPIF1<0的圖象可能為()A. B.C. D.【答案】B【解析】討論SKIPIF1<0、SKIPIF1<0確定SKIPIF1<0的單調(diào)性和定義域、SKIPIF1<0在y軸上的截距,再討論SKIPIF1<0、SKIPIF1<0,結(jié)合SKIPIF1<0的單調(diào)性,即可確定函數(shù)的可能圖象.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0單調(diào)遞增且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上,排除C.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0單調(diào)遞減且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上.∴當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,故只有B符合要求.故選:B.3.(2021·四川高三三模(理))函數(shù)SKIPIF1<0及SKIPIF1<0,則SKIPIF1<0及SKIPIF1<0的圖象可能為()A. B.C. D.【答案】B【解析】討論SKIPIF1<0、SKIPIF1<0確定SKIPIF1<0的單調(diào)性和定義域、SKIPIF1<0在y軸上的截距,再討論SKIPIF1<0、SKIPIF1<0,結(jié)合SKIPIF1<0的單調(diào)性,即可確定函數(shù)的可能圖象.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0單調(diào)遞增且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上,排除C.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0單調(diào)遞減且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上.∴當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,故只有B符合要求.故選:B.【總結(jié)提升】應(yīng)用對數(shù)型函數(shù)的圖象可求解的問題(1)對一些可通過平移、對稱變換作出其圖象的對數(shù)型函數(shù),在求解其單調(diào)性(單調(diào)區(qū)間)、值域(最值)、零點時,常利用數(shù)形結(jié)合思想.(2)一些對數(shù)型方程、不等式問題常轉(zhuǎn)化為相應(yīng)的函數(shù)圖象問題,利用數(shù)形結(jié)合法求解.考點三:對數(shù)函數(shù)的性質(zhì)及應(yīng)用【典例6】(2020·全國高考真題(理))若,則()A. B. C. D.【答案】B【解析】設(shè),則為增函數(shù),因為所以,所以,所以.,當(dāng)時,,此時,有當(dāng)時,,此時,有,所以C、D錯誤.故選:B.【典例7】(2021·千陽縣中學(xué)高三其他模擬(文))設(shè)SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)指數(shù)運算與對數(shù)運算得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再根據(jù)SKIPIF1<0即可判斷SKIPIF1<0,進(jìn)而得答案.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0故選:A【典例8】(2019·北京高考模擬(理))若函數(shù)則函數(shù)的值域是()A. B. C. D.【答案】A【解析】畫出函數(shù)的圖像如下圖所示,由圖可知,函數(shù)的值域為,故選A.【典例9】滿足,且在單調(diào)遞減,若,,,則,,的大小關(guān)系為()A. B.C. D.【答案】C【解析】為偶函數(shù).,,.在單調(diào)遞減,,即.故選:.【典例10】【多選題】(2021·山東日照市·高三二模)若實數(shù)SKIPIF1<0,則下列不等式中一定成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0可推得A正確,由SKIPIF1<0可推得B正確,當(dāng)SKIPIF1<0時,作差比較可知C錯:作差,利用換底公式變形,再根據(jù)基本不等式判斷符號,可得D正確.【詳解】對A,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A正確;對B,由A知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確:對C選項,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故C錯:對D,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D正確.故選:ABD【典例11】(2020·上海高三專題練習(xí))函數(shù)的定義域為.【答案】【解析】由題意可知,解得.【典例12】(2021·浙江高三專題練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0單調(diào)遞增區(qū)間為__________;若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),則a的取值范圍為__________.【答案】SKIPIF1<0SKIPIF1<0【解析】根據(jù)復(fù)合函數(shù)單調(diào)性和函數(shù)定義域得到單調(diào)增區(qū)間;根據(jù)函數(shù)的奇偶性和單調(diào)性得到SKIPIF1<0或SKIPIF1<0,解得答案.【詳解】SKIPIF1<0,函數(shù)的定義域滿足SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.函數(shù)SKIPIF1<0單調(diào)遞減,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,故SKIPIF1<0單調(diào)遞增區(qū)間為SKIPIF1<0.函數(shù)SKIPIF1<0為偶函數(shù),定義域滿足SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減,故SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減,故SKIPIF1<0單調(diào)遞增,又函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),則SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0,無解.故SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【易錯提醒】解答對數(shù)函數(shù)型問題,易忽視函數(shù)的定義域而導(dǎo)致錯誤.【變式探究】1.(2018·全國高考真題(理))設(shè),,則()A. B.C. D.【答案】B【解析】求出,得到的范圍,進(jìn)而可得結(jié)果.詳解:.,即又即故選B.2.(2019·山東高考模擬(文))已知,若正實數(shù)滿足,則的取值范圍為()A. B.或C.或 D.【答案】C【解析】因為與都是上的增函數(shù),所以是上的增函數(shù),又因為所以等價于,由,知,當(dāng)時,在上單調(diào)遞減,故,從而;當(dāng)時,在上單調(diào)遞增,故,從而,綜上所述,的取值范圍是或,故選C.3.(2019·山東高考模擬(文))已知定義在R上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)a滿足,則a的取值范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論