河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省唐山市樂亭一中2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.函數(shù)f(x)=ln(-x)-x-2的零點所在區(qū)間為()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)2.定義域為R的偶函數(shù)滿足對任意的,有=且當時,=,若函數(shù)=在(0,+上恰有六個零點,則實數(shù)的取值范圍是A. B.C. D.3.若,,且,則A. B.C. D.4.已知,若實數(shù)滿足,且,實數(shù)滿足,那么下列不等式中,一定成立的是A. B.C. D.5.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.6.如圖,一個半徑為3m的筒車按逆時針方向每分轉(zhuǎn)1.5圈,筒車的軸心O距離水面的高度為2.2m,設(shè)筒車上的某個盛水筒P到水面的距離為d(單位:m)(在水面下則d為負數(shù)),若從盛水筒P剛浮出水面時開始計算時間,則d與時間t(單位:s)之間的關(guān)系為,則其中A,,K的值分別為()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.27.在正方體中,為棱的中點,則A. B.C. D.8.若,,則的值為()A. B.-C. D.9.已知是第二象限角,,則()A. B.C. D.10.已知函數(shù),則該函數(shù)的零點位于區(qū)間()A. B.C. D.11.若直線l1:2x+y-1=0與l2:y=kx-1平行,則l1,l2之間的距離等于()A. B.C. D.12.化簡()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.設(shè)偶函數(shù)的定義域為,函數(shù)在上為單調(diào)函數(shù),則滿足的所有的取值集合為______14.若,且α為第一象限角,則___________.15.如圖所示,將等腰直角沿斜邊上的高折成一個二面角,使得.那么這個二面角大小是_______16.在正方體中,則異面直線與的夾角為_________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知直線(1)求證:直線過定點(2)求過(1)的定點且垂直于直線直線方程.18.筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用,現(xiàn)有一個筒車按逆時針方向勻速轉(zhuǎn)動.每分鐘轉(zhuǎn)動5圈,如圖,將該簡車抽象為圓O,筒車上的盛水桶抽象為圓O上的點P,已知圓O的半徑為,圓心O距離水面,且當圓O上點P從水中浮現(xiàn)時(圖中點)開始計算時間(1)根據(jù)如圖所示的直角坐標系,將點P到水面的距離h(單位:m,在水面下,h為負數(shù))表示為時間t(單位:s)的函數(shù),并求時,點P到水面的距離;(2)在點P從開始轉(zhuǎn)動的一圈內(nèi),點P到水面的距離不低于的時間有多長?19.已知,(1)求,的值;(2)求的值20.已知.(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)求函數(shù)的最值并寫出取最值時自變量的值;(3)若函數(shù)為偶函數(shù),求的值.21.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.22.已知1與2是三次函數(shù)的兩個零點.(1)求的值;(2)求不等式的解集.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】先計算,,根據(jù)函數(shù)的零點存在性定理可得函數(shù)的零點所在的區(qū)間【詳解】函數(shù),時函數(shù)是連續(xù)函數(shù),,,故有,根據(jù)函數(shù)零點存在性定理可得,函數(shù)的零點所在的區(qū)間為,故選:【點睛】本題主要考查函數(shù)的零點存在性定理的應(yīng)用,不等式的性質(zhì),屬于基礎(chǔ)題2、C【解析】因為=,且是定義域為R的偶函數(shù),令,則,解得,所以有=,所以是周期為2的偶函數(shù),因為當時,=,其圖象為開口向下,頂點為(3,0)的拋物線,因為函數(shù)=在(0,+上恰有六個零點,令,因為所以,所以,要使函數(shù)=在(0,+上恰有六個零點,如圖所示:只需要,解得.故選C.點睛:本題考查函數(shù)的零點及函數(shù)與方程,解答本題時要注意先根據(jù)函數(shù)給出的性質(zhì)對稱性和周期性,畫出函數(shù)的圖象,然后結(jié)合函數(shù)的零點個數(shù)即為函數(shù)和圖象交點的個數(shù),利用數(shù)形結(jié)合思想求得實數(shù)的取值范圍.3、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一個根,b是方程的另一個根由韋達定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=?6,即b=?8,∴2×b=?16=?q,∴q=16∴p+q=21故選:A4、B【解析】∵在上是增函數(shù),且,中一項為負,兩項為正數(shù);或者三項均為負數(shù);即:;或由于實數(shù)x0是函數(shù)的一個零點,當時,當時,故選B5、A【解析】分別求出選項的函數(shù)解析式,再利用奇函數(shù)的定義即可得選項.【詳解】由題意可得,對于A,是奇函數(shù),故A正確;對于B,不是奇函數(shù),故B不正確;對于C,,其定義域不關(guān)于原點對稱,所以不是奇函數(shù),故C不正確;對于D,,其定義域不關(guān)于原點對稱,不是奇函數(shù),故D不正確.故選:A.6、D【解析】根據(jù)實際含義分別求的值即可.【詳解】振幅即為半徑,即;因為逆時針方向每分轉(zhuǎn)1.5圈,所以;;故選:D.7、C【解析】畫出圖形,結(jié)合圖形根據(jù)空間中的垂直的判定對給出的四個選項分別進行分析、判斷后可得正確的結(jié)論【詳解】畫出正方體,如圖所示對于選項A,連,若,又,所以平面,所以可得,顯然不成立,所以A不正確對于選項B,連,若,又,所以平面,故得,顯然不成立,所以B不正確對于選項C,連,則.連,則得,所以平面,從而得,所以.所以C正確對于選項D,連,若,又,所以平面,故得,顯然不成立,所以D不正確故選C【名師點睛】本題考查線線垂直的判定,解題的關(guān)鍵是畫出圖形,然后結(jié)合圖形并利用排除法求解,考查數(shù)形結(jié)合和判斷能力,屬于基礎(chǔ)題8、D【解析】直接利用同角三角函數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】已知,,所以,即,所以,所以,所以.故選:D.9、B【解析】利用同角三角函數(shù)基本關(guān)系式求解.【詳解】因為是第二象限角,,且,所以.故選:B.10、B【解析】分別將選項中區(qū)間的端點代入,利用零點存在性定理判斷即可【詳解】由題,,,,所以,故選:B【點睛】本題考查利用零點存在性定理判斷零點所在區(qū)間,屬于基礎(chǔ)題11、B【解析】根據(jù)兩直線平行求得k的值,再求兩直線之間的距離【詳解】直線l2的方程可化為kx-y-1=0,由兩直線平行得,k=-2;∴l(xiāng)2的方程為2x+y+1=0,∴l(xiāng)1,l2之間的距離為故選B【點睛】本題考查了直線平行以及平行線之間的距離應(yīng)用問題,是基礎(chǔ)題12、D【解析】利用輔助角公式化簡即可.【詳解】.故選:D二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】∵,又函數(shù)在上為單調(diào)函數(shù)∴=∴,或∴∴滿足的所有的取值集合為故答案為14、【解析】先求得,進而可得結(jié)果.【詳解】因為,又為第一象限角,所以,,故.故答案為:.15、【解析】首先利用余弦定理求得的長度,然后結(jié)合三角形的特征確定這個二面角大小即可.【詳解】由已知可得為所求二面角的平面角,設(shè)等腰直角的直角邊長度為,則,由余弦定理可得:,則在中,,即所求二面角大小是.故答案為:16、【解析】先證明,可得或其補角即為異面直線與所成的角,連接,在中求即可.【詳解】在正方體中,,所以,所以四邊形是平行四邊形,所以,所以或其補角即為異面直線與所成的角,連接,由為正方體可得是等邊三角形,所以.故答案為:【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)見解析;(2).【解析】⑴將直線化為,解不等式組即可得證;⑵由(1)知定點為,結(jié)合題目條件計算得直線方程解析:(1)根據(jù)題意將直線化為的解得,所以直線過定點(2)由(1)知定點為,設(shè)直線的斜率為k,且直線與垂直,所以,所以直線的方程為18、(1),m(2)4s【解析】(1)根據(jù)題意先求出筒車轉(zhuǎn)動的角速度,從而求出h關(guān)于時間t的函數(shù),和時的函數(shù)值;(2)先確定定義域,再求解不等式,得到,從而求出答案.【小問1詳解】筒車按逆時針方向勻速轉(zhuǎn)動.每分鐘轉(zhuǎn)動5圈,故筒車每秒轉(zhuǎn)動的角速度為,故,當時,,故點P到水面的距離為m【小問2詳解】點P從開始轉(zhuǎn)動的一圈,所用時間,令,其中,解得:,則,故點P到水面的距離不低于的時間為4s.19、(1),(2)【解析】(1)首先利用誘導(dǎo)公式得到,再根據(jù)同角三角函數(shù)的基本關(guān)系計算可得;(2)利用誘導(dǎo)公式化簡,再將弦化切,最后代入求值即可;【小問1詳解】解:因為,,所以,又解得或,因為,所以【小問2詳解】解:20、(1);(2)當時,;當時,;(3).【解析】(1)利用二倍角公式、輔助角公式化簡函數(shù),再利用正弦函數(shù)的單調(diào)性求解作答.(2)利用(1)中函數(shù),借助正弦函數(shù)的最值計算作答.(3)求出,再利用三角函數(shù)的奇偶性推理計算作答.【小問1詳解】依題意,,由得:,所以函數(shù)的單調(diào)遞減區(qū)間是.【小問2詳解】由(1)知,當,即時,,當,即時,,所以,當時,,當時,.【小問3詳解】由(1)知,,因函數(shù)為偶函數(shù),于是得,化簡整理得,而,則,所以的值是.21、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論