![河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/11/1F/wKhkGWV45hWAHGCFAAHLWtl8Pb4106.jpg)
![河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/11/1F/wKhkGWV45hWAHGCFAAHLWtl8Pb41062.jpg)
![河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/11/1F/wKhkGWV45hWAHGCFAAHLWtl8Pb41063.jpg)
![河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/11/1F/wKhkGWV45hWAHGCFAAHLWtl8Pb41064.jpg)
![河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/11/1F/wKhkGWV45hWAHGCFAAHLWtl8Pb41065.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鄭州市中牟縣2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.若直線l1∥l2,且l1的傾斜角為45°,l2過點(4,6),則l2還過下列各點中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)2.函數(shù),則函數(shù)()A.在上是增函數(shù) B.在上是減函數(shù)C.在是增函數(shù) D.在是減函數(shù)3.當(dāng)時,在同一平面直角坐標(biāo)系中,函數(shù)與的圖象可能為A. B.C. D.4.將函數(shù),且,下列說法錯誤的是()A.為偶函數(shù) B.C.若在上單調(diào)遞減,則的最大值為9 D.當(dāng)時,在上有3個零點5.化簡的值是A. B.C. D.6.在半徑為2的圓上,一扇形的弧所對的圓心角為,則該扇形的面積為()A. B.C. D.7.若,則下列關(guān)系式一定成立的是()A. B.C. D.8.函數(shù)f(x)=|x|+(aR)的圖象不可能是()A. B.C. D.9.已知直線,平面滿足,則直線與直線的位置關(guān)系是A.平行 B.相交或異面C.異面 D.平行或異面10.與圓關(guān)于直線對稱的圓的方程為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知,則的最小值為_______________.12.已知,若,則_______;若,則實數(shù)的取值范圍是__________13.______14.若,,則=______;_______15.若,則的定義域為____________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.(Ⅰ)證明:CD⊥平面PAE;(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.17.如圖,為等邊三角形,平面,,,為的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面平面.18.已知,命題:,;命題:,.(1)若是真命題,求的最大值;(2)若是真命題,是假命題,求的取值范圍.19.已知直線與圓相交于點和點(1)求圓心所在的直線方程;(2)若圓心的半徑為1,求圓的方程20.設(shè)非空集合P是一元一次方程的解集.若,,滿足,,求的值.21.命題p:方程x2+x+m=0有兩個負數(shù)根;命題q:任意實數(shù)x∈R,mx2-2mx+1>0成立;若p與q都是真命題,求m取值范圍.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】由題意求出得方程,將四個選項逐一代入,即可驗證得到答案.【詳解】由題直線l1∥l2,且l1的傾斜角為45°,則的傾斜角為45,斜率由點斜式可得的方程為即四個選項中只有B滿足方程.即l2還過點(-2,0).故選B【點睛】本題考查直線方程的求法,屬基礎(chǔ)題.2、C【解析】根據(jù)基本函數(shù)單調(diào)性直接求解.【詳解】因為,所以函數(shù)在是增函數(shù),故選:C3、C【解析】當(dāng)時,單調(diào)遞增,單調(diào)遞減故選4、C【解析】先求得,然后結(jié)合函數(shù)的奇偶性、單調(diào)性、零點對選項進行分析,從而確定正確選項.【詳解】,,所以,為偶函數(shù),A選項正確.,B選項正確.,若在上單調(diào)遞減,則,,由于,所以,所以的最大值為,的最大值為,C選項錯誤.當(dāng)時,,,當(dāng)時,,所以D選項正確.故選:C5、B【解析】利用終邊相同角同名函數(shù)相同,可轉(zhuǎn)化為求的余弦值即可.【詳解】.故選B.【點睛】本題主要考查了三角函數(shù)中終邊相同的角三角函數(shù)值相同及特殊角的三角函數(shù)值,屬于容易題.6、D【解析】利用扇形的面積公式即可求面積.【詳解】由題設(shè),,則扇形的面積為.故選:D7、A【解析】判斷函數(shù)的奇偶性以及單調(diào)性,由此可判斷函數(shù)值的大小,即得答案.【詳解】由可知:,為偶函數(shù),又,知在上單調(diào)遞減,在上單調(diào)遞增,故,故選:A.8、C【解析】對分類討論,將函數(shù)寫成分段形式,利用對勾函數(shù)的單調(diào)性,逐一進行判斷圖象即可.【詳解】,①當(dāng)時,,圖象如A選項;②當(dāng)時,時,,在遞減,在遞增;時,,由,單調(diào)遞減,所以在上單調(diào)遞減,故圖象為B;③當(dāng)時,時,,可得,,在遞增,即在遞增,圖象為D;故選:C.9、D【解析】∵a∥α,∴a與α沒有公共點,b?α,∴a、b沒有公共點,∴a、b平行或異面故選D.10、A【解析】設(shè)所求圓的圓心坐標(biāo)為,列出方程組,求得圓心關(guān)于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標(biāo),設(shè)所求圓的圓心坐標(biāo)為,則圓心關(guān)于的對稱點,滿足,解得,即所求圓的圓心坐標(biāo)為,且半徑與圓相等,所以所求圓方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準(zhǔn)確求解點關(guān)于直線的對稱點的坐標(biāo)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、##225【解析】利用基本不等式中“1”的妙用即可求解.【詳解】解:因為,所以,當(dāng)且僅當(dāng),即時等號成立,所以的最小值為.故答案為:.12、①.②.【解析】先判斷函數(shù)的奇偶性,由求解;再根據(jù)函數(shù)的單調(diào)性,由求解.【詳解】因為的定義域為R,且,,所以是奇函數(shù),又,則-2;因為在上是增函數(shù),所以在上是增函數(shù),又是R上的奇函數(shù),所以在R上遞增,且,所以由,得,即,所以,解得或,所以實數(shù)的取值范圍是,故答案為:,13、【解析】由指數(shù)和對數(shù)運算法則直接計算即可.【詳解】.故答案為:.14、①.②.【解析】首先指對互化,求,再求;第二問利用指數(shù)運算,對數(shù),化簡求值.【詳解】,,所以;,,所以故答案為:;15、【解析】使表達式有意義,解不等式組即可.【詳解】由題,解得,即,故答案為:.【點晴】此題考函數(shù)定義域的求法,屬于簡單題.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)證明略(2)【解析】(Ⅰ)要證平面,由已知平面,已經(jīng)有,因此在直角梯形中證明即可,通過計算得,而是中點,則有;(Ⅱ)PB與平面ABCD所成的角是,下面關(guān)鍵是作出PB與平面PAE所成的角,由(Ⅰ)作,分別與相交于,連接,則是PB與平面PAE所成的角,由這兩個角相等,可得,同樣在直角梯形中可計算出,也即四棱錐P-ABCD的高,體積可得.另外也可建立空間直角坐標(biāo)系,通過空間向量法求得結(jié)論,第(Ⅱ)小題中關(guān)鍵是求點的坐標(biāo),注意這里直線與平面所成的角相等轉(zhuǎn)化為直線與平面的法向量的夾角相等試題解析:解法1(Ⅰ如圖(1)),連接AC,由AB=4,,是的中點,所以所以而內(nèi)的兩條相交直線,所以CD⊥平面PAE(Ⅱ)過點B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是為直線PB與平面PAE所成的角,且由知,為直線與平面所成的角由題意,知因為所以由所以四邊形是平行四邊形,故于是在中,所以于是又梯形的面積為所以四棱錐的體積為解法2:如圖(2),以A為坐標(biāo)原點,所在直線分別為建立空間直角坐標(biāo)系.設(shè)則相關(guān)的各點坐標(biāo)為:(Ⅰ)易知因為所以而是平面內(nèi)的兩條相交直線,所以(Ⅱ)由題設(shè)和(Ⅰ)知,分別是,的法向量,而PB與所成的角和PB與所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面積為,所以四棱錐的體積為.考點:線面垂直的判斷,棱錐的體積17、(1)見解析(2)見解析【解析】(Ⅰ)取的中點,連結(jié),由三角形中位線定理可得,,結(jié)合已知,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(Ⅱ)由線面垂直的性質(zhì)可得平面,得到,再由為等邊三角形,得,結(jié)合線面垂直的判定可得平面,再由面面垂直的判定可得面面【詳解】(Ⅰ)證明:取的中點,連結(jié)∵在中,,∵,∴,∴四邊形為平行四邊形∴又∵平面∴平面(Ⅱ)證:∵面,平面,∴,又∵為等邊三角形,∴,又∵,∴平面,又∵,∴面,又∵面,∴面面18、(1)1;(2).【解析】(1)根據(jù)題意可得,為真,令,只需即可求解.(2)根據(jù)題意可得與一真一假,當(dāng)是真命題時,可得或,分別求出當(dāng)真假或假真時的取值范圍,最后取并集即可求解.【詳解】解:(1)若命題:,為真,∴則令,,又∵,∴,∴的最大值為1.(2)因為是真命題,是假命題,所以與一真一假,當(dāng)是真命題時,,解得或,當(dāng)是真命題,是假命題時,有,解得;當(dāng)是假命題,是真命題時,有,解得;綜上,的取值范圍為.19、(1)x-y=0(2)【解析】本試題主要是考查了直線與圓的位置關(guān)系的運用,.以及圓的方程的求解(1)PQ中點M(,),,所以線段PQ的垂直平分線即為圓心C所在的直線的方程:(2)由條件設(shè)圓的方程為:,由圓過P,Q點得得到關(guān)系式求解得到.則或故圓的方程為20、答案見解析【解析】由題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬材料表面處理工藝守則
- 山東省青島市城陽區(qū)2024-2025學(xué)年高三上學(xué)期期中考試物理試卷(解析版)
- 溶栓藥物在急性心梗中的應(yīng)用策略
- 電商項目的結(jié)構(gòu)化管理及市場分析研究
- 知識產(chǎn)權(quán)管理與商業(yè)戰(zhàn)略的結(jié)合
- 現(xiàn)代人如何通過運動與中醫(yī)養(yǎng)生相結(jié)合
- 公路更申請書
- 現(xiàn)代服務(wù)業(yè)中的人力資源管理與發(fā)展策略
- 現(xiàn)代綜合體建筑的外觀設(shè)計創(chuàng)新
- 甘肅農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《企業(yè)財務(wù)報告分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年湖南韶山干部學(xué)院公開招聘15人歷年高頻重點提升(共500題)附帶答案詳解
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題
- 不可切除肺癌放療聯(lián)合免疫治療專家共識(2024年版)j解讀
- DB23/T 3657-2023醫(yī)養(yǎng)結(jié)合機構(gòu)服務(wù)質(zhì)量評價規(guī)范
- 教科版科學(xué)六年級下冊14《設(shè)計塔臺模型》課件
- 智研咨詢發(fā)布:2024年中國MVR蒸汽機械行業(yè)市場全景調(diào)查及投資前景預(yù)測報告
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- 煙花爆竹重大危險源辨識AQ 4131-2023知識培訓(xùn)
- 六年級語文老師家長會
- DRG丨DIP病案10項質(zhì)控指標(biāo)解讀
- 2024年新疆公務(wù)員考試申論試題(縣鄉(xiāng)卷)
評論
0/150
提交評論