版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省長郡中學(xué)、雅禮中學(xué)等四校2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請將正確答案涂在答題卡上.)1.在半徑為2的圓上,一扇形的弧所對的圓心角為,則該扇形的面積為()A. B.C. D.2.若集合,則A. B.C. D.3.若,求()A. B.C. D.4.已知直線x+3y+n=0在x軸上的截距為-3,則實(shí)數(shù)n的值為()A. B.C. D.5.下列關(guān)于集合的關(guān)系式正確的是A. B.C. D.6.為得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個(gè)長度單位 B.向右平移個(gè)長度單位C.向左平移個(gè)長度單位 D.向右平移個(gè)長度單位7.已知平面α和直線l,則α內(nèi)至少有一條直線與l()A.異面 B.相交C.平行 D.垂直8.總體由編號為01,02,...,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號為()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.169.將函數(shù)y=cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是()A. B.C. D.10.若,則下列不等式一定成立的是()A. B.C. D.11.設(shè)是定義在實(shí)數(shù)集上的函數(shù),且,若當(dāng)時(shí),,則有()A. B.C. D.12.將函數(shù)的圖像向左、向下各平移1個(gè)單位長度,得到的函數(shù)圖像,則()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知不等式的解集是__________.14.函數(shù)在上是x的減函數(shù),則實(shí)數(shù)a的取值范圍是______15.函數(shù),若最大值為,最小值為,,則的取值范圍是______.16.已知α為第二象限角,且則的值為______.三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫出必要的文字說明、證明過程或演算步驟。)17.已知定義域?yàn)榈暮瘮?shù)是奇函數(shù).(1)求的解析式;(2)若恒成立,求實(shí)數(shù)的取值范圍.18.如圖,在直三棱柱ABC-A1B1C1中,三角形ABC為等腰直角三角形,AC=BC=2(1)求證:AC1//(2)二面角B119.蘆薈是一種經(jīng)濟(jì)價(jià)值很高的觀賞、食用植物,不僅可美化居室、凈化空氣,又可美容保健,因此深受人們歡迎,在國內(nèi)占有很大的市場.某人準(zhǔn)備進(jìn)軍蘆薈市場,栽培蘆薈,為了了解行情,進(jìn)行市場調(diào)研,從4月1日起,蘆薈的種植成本Q(單位:元/10kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)情況如表:t50110250Q150108150(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個(gè)最能反映蘆薈種植成本Q與上市時(shí)間t的變化關(guān)系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并說明理由;(2)利用你選擇的函數(shù),求蘆薈種植成本最低時(shí)的上市天數(shù)及最低種植成本.20.在①兩個(gè)相鄰對稱中心的距離為,②兩條相鄰對稱軸的距離為,③兩個(gè)相鄰最高點(diǎn)的距離為,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并對其求解問題:函數(shù)的圖象過點(diǎn),且滿足__________.當(dāng)時(shí),,求的值.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分21.對于等式,如果將視為自變量,視為常數(shù),為關(guān)于(即)的函數(shù),記為,那么,是冪函數(shù);如果將視為常數(shù),視為自變量,為關(guān)于(即)的函數(shù),記為,那么,是指數(shù)函數(shù);如果將視為常數(shù),視為自變量為關(guān)于(即)的函數(shù),記為,那么,是對數(shù)函數(shù).事實(shí)上,由這個(gè)等式還可以得到更多的函數(shù)模型.例如,如果為常數(shù)(為自然對數(shù)的底數(shù)),將視為自變量,則為的函數(shù),記為(1)試將表示成的函數(shù);(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、單調(diào)性、奇偶性等,請根據(jù)你學(xué)習(xí)到的函數(shù)知識直接寫出該函數(shù)的性質(zhì),不必證明.并嘗試在所給坐標(biāo)系中畫出函數(shù)的圖象22.某地區(qū)每年各個(gè)月份的月平均最高氣溫近似地滿足周期性規(guī)律,因此第個(gè)月的月平均最高氣溫可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示月份,和是正整數(shù),,.統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個(gè)月份的月平均最高氣溫基本相同,月份的月平均最高氣溫為攝氏度,是一年中月平均最高氣溫最低的月份,隨后逐月遞增直到月份達(dá)到最高為攝氏度.(1)求的解析式;(2)某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,求一年中該植物在該地區(qū)可生存的月份數(shù).
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】利用扇形的面積公式即可求面積.【詳解】由題設(shè),,則扇形的面積為.故選:D2、D【解析】詳解】集合,所以.故選D.3、A【解析】根據(jù),求得,再利用指數(shù)冪及對數(shù)的運(yùn)算即可得出答案.【詳解】解:因?yàn)?,所以,所?故選:A.4、B【解析】根據(jù)題意,分析可得點(diǎn)(﹣3,0)在直線x+3y+n=0上,將點(diǎn)的坐標(biāo)代入直線方程,計(jì)算可得答案【詳解】根據(jù)題意,直線x+3y+n=0在x軸上的截距為﹣3,則點(diǎn)(﹣3,0)在直線x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故選B【點(diǎn)睛】本題考查直線的一般式方程以及截距的計(jì)算,關(guān)鍵是掌握直線一般方程的形式,屬于基礎(chǔ)題5、A【解析】因?yàn)閧0}是含有一個(gè)元素的集合,所以{0}≠,故B不正確;元素與集合間不能劃等號,故C不正確;顯然相等,故D不正確.故選:A6、A【解析】先將變形為,即可得出結(jié)果.詳解】,只需將函數(shù)的圖象向左平移個(gè)長度單位.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的平移變換,屬于基礎(chǔ)題.7、D【解析】若直線l∥α,α內(nèi)至少有一條直線與l垂直,當(dāng)l與α相交時(shí),α內(nèi)至少有一條直線與l垂直當(dāng)l?α,α內(nèi)至少有一條直線與l垂直故選D8、D【解析】利用隨機(jī)數(shù)表從給定位置開始依次取兩個(gè)數(shù)字,根據(jù)與20的大小關(guān)系可得第5個(gè)個(gè)體的編號.【詳解】從隨機(jī)數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個(gè)數(shù)字,小于或等于20的5個(gè)編號分別為:07,03,13,20,16,故第5個(gè)個(gè)體編號為16.故選:D.【點(diǎn)睛】本題考查隨機(jī)數(shù)表抽樣,此類問題理解抽樣規(guī)則是關(guān)鍵,本題屬于容易題.9、A【解析】由題意結(jié)合輔助角公式可得,進(jìn)而可得g(x)=2sin,由三角函數(shù)的性質(zhì)可得,化簡即可得解.【詳解】設(shè)f(x)=cosx+sinx=2sin,向左平移m個(gè)單位長度得g(x)=2sin,∵g(x)的圖象關(guān)于y軸對稱,∴,∴m=,由m>0可得m的最小值為.故選:A.【點(diǎn)睛】本題考查了輔助角公式及三角函數(shù)圖象與性質(zhì)的應(yīng)用,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.10、B【解析】對于ACD,舉例判斷即可,對于B,利用不等式的性質(zhì)判斷【詳解】解:對于A,令,,滿足,但,故A錯誤,對于B,∵,∴,故B正確,對于C,當(dāng)時(shí),,故C錯誤,對于D,令,,滿足,而,故D錯誤.故選:B.11、B【解析】由f(2-x)=f(x)可知函數(shù)f(x)的圖象關(guān)于x=1對稱,所以,,又當(dāng)x≥1時(shí),f(x)=lnx單調(diào)遞增,所以,故選B12、B【解析】根據(jù)函數(shù)的圖象變換的原則,結(jié)合對數(shù)的運(yùn)算性質(zhì),準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,將函數(shù)的圖像向左、向下各平移1個(gè)單位長度,可得.故選:B.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】結(jié)合指數(shù)函數(shù)的單調(diào)性、絕對值不等式的解法求得不等式的解集.詳解】,,,或,解得或,所以不等式不等式的解集是.故答案為:14、【解析】首先保證真數(shù)位置在上恒成立,得到的范圍要求,再分和進(jìn)行討論,由復(fù)合函數(shù)的單調(diào)性,得到關(guān)于的不等式,得到答案.【詳解】函數(shù),所以真數(shù)位置上的在上恒成立,由一次函數(shù)保號性可知,,當(dāng)時(shí),外層函數(shù)為減函數(shù),要使為減函數(shù),則為增函數(shù),所以,即,所以,當(dāng)時(shí),外層函數(shù)為增函數(shù),要使為減函數(shù),則為減函數(shù),所以,即,所以,綜上可得的范圍為.故答案為.【點(diǎn)睛】本題考查由復(fù)合函數(shù)的單調(diào)性,求參數(shù)的范圍,屬于中檔題.15、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉(zhuǎn)化為和有關(guān)的式子,結(jié)合對勾函數(shù)的單調(diào)性求解出的取值范圍.【詳解】,令,定義域?yàn)殛P(guān)于原點(diǎn)對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,∴,,,∴,∴,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解答本題的關(guān)鍵在于函數(shù)奇偶性的判斷,同時(shí)需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).16、【解析】根據(jù)已知求解得出,再利用誘導(dǎo)公式和商數(shù)關(guān)系化簡可求【詳解】由,得,得或.α為第二象限角,,.故答案:.三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)由是奇函數(shù)可得,從而可求得值,即可求得的解析式;(2)由復(fù)合函數(shù)的單調(diào)性判斷在上單調(diào)遞減,結(jié)合函數(shù)的奇偶性將不等式恒成立問題轉(zhuǎn)化為,令,利用二次函數(shù)的性質(zhì)求得的最大值,即可求得的取值范圍【詳解】(1)因?yàn)楹瘮?shù)為奇函數(shù),所以,即,所以,所以,可得,函數(shù).(2)由(1)知所以在上單調(diào)遞減.由,得,因?yàn)楹瘮?shù)是奇函數(shù),所以,所以,整理得,設(shè),,則,當(dāng)時(shí),有最大值,最大值為.所以,即.【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)的奇偶性求參數(shù),主要方法有兩個(gè),一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗(yàn)證奇偶性.18、(1)見解析(2)45°【解析】1設(shè)BC1∩B1C=E,連接ED,則2推導(dǎo)出CD⊥AB,BB1⊥CD,從而CD⊥平面ABB1A1,進(jìn)而CD⊥B1解析:(1)在直三棱柱ABC-A1B則E為BC1的中點(diǎn),連接∵D為AB的中點(diǎn),∴ED//AC,又∵ED?平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D為AB中點(diǎn),∴CD⊥AB,又∵BB1⊥平面ABC,CD?∴BB1⊥CD,又AB∩BB1∵B1D?平面ABB1A1,AB?平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B19、(1)選用二次函數(shù)Q=at2+bt+c進(jìn)行描述,理由見解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的數(shù)據(jù)和函數(shù)的單調(diào)性得出應(yīng)選函數(shù),再代入數(shù)據(jù)可得蘆薈種植成本Q與上市時(shí)間t的變化關(guān)系的函數(shù).(2)由二次函數(shù)的性質(zhì)可以得出蘆薈種植成本最低成本.【詳解】(1)由所提供的數(shù)據(jù)可知,刻畫蘆薈種植成本Q與上市時(shí)間t的變化關(guān)系的函數(shù)不可能是常數(shù)函數(shù),若用函數(shù)Q=at+b,Q=a·bt,Q=alogbt中的任意一個(gè)來反映時(shí)都應(yīng)有a≠0,且上述三個(gè)函數(shù)均為單調(diào)函數(shù),這與表格所提供的數(shù)據(jù)不符合,所以應(yīng)選用二次函數(shù)Q=at2+bt+c進(jìn)行描述.將表格所提供的三組數(shù)據(jù)分別代入函數(shù)Q=at2+bt+c,可得:,解得.所以,刻畫蘆薈種植成本Q與上市時(shí)間t變化關(guān)系的函數(shù).(2)當(dāng)時(shí),蘆薈種植成本最低為(元/10kg).【點(diǎn)睛】本題考查求回歸方程,以及回歸方程的應(yīng)用,屬于中檔題.20、選①②③,答案相同,均為【解析】選①②可以得到最小正周期,從而得到,結(jié)合圖象過的點(diǎn),可求出,從而得到,進(jìn)而得到,接下來用湊角法求出的值;選③,可以直接得到最小正周期,接下來過程與選①②相同.【詳解】選①②:由題意得:的最小正周期,則,結(jié)合,解得:,因?yàn)閳D象過點(diǎn),所以,因?yàn)?,所以,所以,因?yàn)?,所以,因?yàn)?,所以,所以,;選③:由題意得:的最小正周期,則,結(jié)合,解得:,因?yàn)閳D象過點(diǎn),所以,因?yàn)?,所以,所以,因?yàn)椋?,因?yàn)?,所以,所以,?1、(1),(,)(2)答案見解析【解析】(1)結(jié)合對數(shù)運(yùn)算的知識求得.(2)根據(jù)的解析式寫出的性質(zhì),并畫出圖象.【小問1詳解】依題意因?yàn)?,,兩邊取以為底的對?shù)得,所以將y表示為x的函數(shù),則,(,),即,(,);【小問2詳解】函數(shù)性質(zhì):函數(shù)的定義域?yàn)椋瘮?shù)值域,函數(shù)是非奇非偶函數(shù),函數(shù)的在上單調(diào)遞減,在上單調(diào)遞減函數(shù)的圖象:22、(1),,為正整數(shù)(2)一年中該植物在該地區(qū)可生存的月份數(shù)是【解析】(1)先利用月平均氣溫最低、最高的月份求出周期和及值,再利用最低氣溫和最高氣溫求出、值,即得到所求函數(shù)的解析式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年抗氧劑1010搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年北京市金屬包裝容器制造行業(yè)產(chǎn)銷需求及投資策略研究報(bào)告
- 2024-2030年全球及中國高級陶瓷和納米陶瓷粉末市場產(chǎn)銷規(guī)模及銷售效益預(yù)測報(bào)告版
- 2024-2030年全球及中國自熱食品行業(yè)盈利模式及營銷推廣策略報(bào)告
- 2024-2030年全球及中國無鹵素藥芯焊錫絲行業(yè)發(fā)展動態(tài)及前景規(guī)劃分析報(bào)告
- 2024-2030年全球及中國巧克力制造機(jī)行業(yè)應(yīng)用前景及投資盈利預(yù)測報(bào)告
- 2024-2030年全球及中國地板機(jī)器人吸塵器行業(yè)銷售情況及競爭趨勢預(yù)測報(bào)告
- 2024-2030年全球健康醫(yī)療大數(shù)據(jù)行業(yè)競爭格局及發(fā)展模式研究報(bào)告
- 2024-2030年供水管道(水管)公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年中國麻紡織行業(yè)市場競爭格局及未來投資趨勢分析報(bào)告
- MOOC 中學(xué)化學(xué)教學(xué)設(shè)計(jì)與實(shí)踐-北京師范大學(xué) 中國大學(xué)慕課答案
- 中國食物成分表2018年(標(biāo)準(zhǔn)版)第6版
- 手術(shù)患者血糖控制方案
- 2023年醫(yī)科醫(yī)學(xué)計(jì)算機(jī)應(yīng)用題庫
- (正式版)SHT 3070-2024 石油化工管式爐鋼結(jié)構(gòu)設(shè)計(jì)規(guī)范
- 有限元分析實(shí)驗(yàn)報(bào)告
- Unit2Whattimedoyougotoschool?大單元整體教學(xué)設(shè)計(jì)人教版七年級英語下冊
- JTG F80-1-2004 公路工程質(zhì)量檢驗(yàn)評定標(biāo)準(zhǔn) 第一冊 土建工程
- 浙江科學(xué)技術(shù)出版社小學(xué)五年級下冊綜合實(shí)踐活動完全教案(教學(xué)計(jì)劃-進(jìn)度計(jì)劃-共14節(jié)課時(shí))新疆有
- 四川音樂學(xué)院附屬中等音樂學(xué)校輔導(dǎo)員招聘考試真題2023
- 浙江省臺州市椒江區(qū)2023-2024學(xué)年四年級上學(xué)期期末科學(xué)試卷
評論
0/150
提交評論