2024屆陜西省漢中學市城固縣中考數(shù)學仿真試卷含解析_第1頁
2024屆陜西省漢中學市城固縣中考數(shù)學仿真試卷含解析_第2頁
2024屆陜西省漢中學市城固縣中考數(shù)學仿真試卷含解析_第3頁
2024屆陜西省漢中學市城固縣中考數(shù)學仿真試卷含解析_第4頁
2024屆陜西省漢中學市城固縣中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年陜西省漢中學市城固縣中考數(shù)學仿真試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.82.如圖,矩形ABCD中,AB=10,BC=5,點E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.153.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x24.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a25.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20186.如果,那么的值為()A.1 B.2 C. D.7.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.8.已知空氣的單位體積質量是0.001239g/cm3,則用科學記數(shù)法表示該數(shù)為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm39.如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN等于()A.?

B.?

C.?

D.?10.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π二、填空題(本大題共6個小題,每小題3分,共18分)11.計算tan260°﹣2sin30°﹣cos45°的結果為_____.12.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.13.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.14.使有意義的x的取值范圍是______.15.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.16.等腰中,是BC邊上的高,且,則等腰底角的度數(shù)為__________.三、解答題(共8題,共72分)17.(8分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關系.18.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據繪制成如下兩幅不完整的統(tǒng)計圖.請根據以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?19.(8分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數(shù)表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.20.(8分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.21.(8分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).22.(10分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數(shù)式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.23.(12分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.24.如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

連接OP、OA,根據垂徑定理求出AQ,根據勾股定理求出OQ,計算即可.【題目詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【題目點撥】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關鍵.2、B【解題分析】作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【題目點撥】本題考查了軸對稱-最短路徑問題,矩形的性質等,根據題意正確添加輔助線是解題的關鍵.3、D【解題分析】分析:根據平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.4、D【解題分析】

直接合并同類項,合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.【題目詳解】2a2+3a2=5a2.故選D.【題目點撥】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.5、A【解題分析】

根據去括號法則、絕對值的性質、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【題目詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【題目點撥】本題去括號法則、絕對值的性質、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關鍵.6、D【解題分析】

先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【題目詳解】故選:D.【題目點撥】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.7、B【解題分析】

由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【題目詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【題目點撥】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.8、A【解題分析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數(shù)法—表示較小的數(shù).9、A【解題分析】

連接AM,根據等腰三角形三線合一的性質得到AM⊥BC,根據勾股定理求得AM的長,再根據在直角三角形的面積公式即可求得MN的長.【題目詳解】解:連接AM,

∵AB=AC,點M為BC中點,

∴AM⊥CM(三線合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根據勾股定理得:AM===4,

又S△AMC=MN?AC=AM?MC,∴MN==.

故選A.【題目點撥】綜合運用等腰三角形的三線合一,勾股定理.特別注意結論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.10、B【解題分析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【題目詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【題目點撥】考查了切線的判定和性質;能夠通過作輔助線將所求的角轉移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】

分別算三角函數(shù),再化簡即可.【題目詳解】解:原式=-2×-×=1.【題目點撥】本題考查掌握簡單三角函數(shù)值,較基礎.12、25【解題分析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.13、1【解題分析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.14、【解題分析】二次根式有意義的條件.【分析】根據二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.15、【解題分析】試題解析:根據題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.16、,,【解題分析】

分三種情況:①點A是頂角頂點時,②點A是底角頂點,且AD在△ABC外部時,③點A是底角頂點,且AD在△ABC內部時,再結合直角三角形中,30°的角所對的直角邊等于斜邊的一半即可求解.【題目詳解】①如圖,若點A是頂角頂點時,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點A是底角頂點,且AD在△ABC外部時,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點A是底角頂點,且AD在△ABC內部時,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數(shù)為45°或15°或75°;故答案為,,.【題目點撥】本題考查了等腰三角形的性質和直角三角形中30°的角所對的直角邊等于斜邊的一半的性質,解題的關鍵是要分情況討論.三、解答題(共8題,共72分)17、(1)①;②;(2)【解題分析】

(1)①先根據等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【題目詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【題目點撥】此題是幾何變換綜合題,主要考查了等邊三角形的性質,三角形的內角和定理,全等三角形的判定和性質,等腰三角形的判定和性質,銳角三角函數(shù),作出輔助線構造出全等三角形是解本題的關鍵.18、(1)見解析;(2)A;(3)800人.【解題分析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據眾數(shù)的定義即可求解;(3)利用總人數(shù)2000乘以對應的百分比即可求解.【題目詳解】解:(1)∵被調查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解題分析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據直角三角形內切圓半徑的計算公式得到Rt△ABC的內切圓的半徑=2,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據角平分線的性質可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標即可.【題目詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內切圓的半徑=,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當y=1時,﹣x+13=1,則P(24,1)當x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【題目點撥】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、角平分線的性質和三角形內心的性質;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質是解題的關鍵.20、(1);(2);(3)【解題分析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內切.先根據兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【題目詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據勾股定理得:AD=(3)①如圖3.圓O與圓D相內切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【題目點撥】本題主要考查圓的相關知識:垂徑定理,圓與圓相切的條件,關鍵是能靈活運用垂徑定理和勾股定理相結合思考問題,另外需注意圓相切要分內切與外切兩種情況.21、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解題分析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.22、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解題分析】試題分析:(1)把A的坐標代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標;(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論