版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省張家港市梁豐中學2024屆中考聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或22.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人3.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°4.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣75.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.96.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣27.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質(zhì)量約為0.056盎司.將0.056用科學記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣18.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認為其中正確信息的個數(shù)有A.2個 B.3個 C.4個 D.5個9.某廠進行技術(shù)創(chuàng)新,現(xiàn)在每天比原來多生產(chǎn)30臺機器,并且現(xiàn)在生產(chǎn)500臺機器所需時間與原來生產(chǎn)350臺機器所需時間相同.設(shè)現(xiàn)在每天生產(chǎn)x臺機器,根據(jù)題意可得方程為()A. B. C. D.10.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃二、填空題(本大題共6個小題,每小題3分,共18分)11.2018年貴州省公務(wù)員、人民警察、基層培養(yǎng)項目和選調(diào)生報名人數(shù)約40.2萬人,40.2萬人用科學記數(shù)法表示為_____人.12.化簡:________.13.若a﹣3有平方根,則實數(shù)a的取值范圍是_____.14.大連市內(nèi)與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內(nèi)開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數(shù)關(guān)系式為_____.15.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.16.二次根式中字母x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)求不等式組的整數(shù)解.18.(8分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;19.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結(jié)DE,OE、OD,求證:DE是⊙O的切線.20.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.21.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.求證:AP=BQ;當BQ=時,求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.22.(10分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?23.(12分)某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)郁金香2.43玫瑰22.5(1)設(shè)種植郁金香x畝,兩種花卉總收益為y萬元,求y關(guān)于x的函數(shù)關(guān)系式.(收益=銷售額﹣成本)(2)若計劃投入的成本的總額不超過70萬元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個多少畝?24.如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【題目詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【題目點撥】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.2、B【解題分析】
設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【題目詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【題目點撥】本題考查了一元一次方程的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.3、A【解題分析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.4、A【解題分析】
直接利用分式有意義則分母不為零進而得出答案.【題目詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【題目點撥】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當分母不等于零時,分式有意義;當分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).5、B【解題分析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【題目詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.6、B【解題分析】分析:首先得到當點E旋轉(zhuǎn)至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉(zhuǎn)至y軸上時DE最??;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.7、B【解題分析】
0.056用科學記數(shù)法表示為:0.056=,故選B.8、D【解題分析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對稱軸x,∴<1.∴ab>1.故①正確.②如圖,當x=1時,y<1,即a+b+c<1.故②正確.③如圖,當x=﹣1時,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當x=﹣1時,y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對稱軸,則.故⑤正確.綜上所述,正確的結(jié)論是①②③④⑤,共5個.故選D.9、A【解題分析】
根據(jù)現(xiàn)在生產(chǎn)500臺機器所需時間與原計劃生產(chǎn)350臺機器所需時間相同,所以可得等量關(guān)系為:現(xiàn)在生產(chǎn)500臺機器所需時間=原計劃生產(chǎn)350臺機器所需時間.【題目詳解】現(xiàn)在每天生產(chǎn)x臺機器,則原計劃每天生產(chǎn)(x﹣30)臺機器.依題意得:,故選A.【題目點撥】本題考查了分式方程的應(yīng)用,弄清題意,找準等量關(guān)系列出方程是解題的關(guān)鍵.10、B【解題分析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉(zhuǎn)化為減法運算,列算式計算即可.【題目詳解】3-(-4)=3+4=7℃.
故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.02×1.【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、【解題分析】
根據(jù)平面向量的加法法則計算即可【題目詳解】.故答案為:【題目點撥】本題考查平面向量的加減法則,解題的關(guān)鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結(jié)合律,適合去括號法則.13、a≥1.【解題分析】
根據(jù)平方根的定義列出不等式計算即可.【題目詳解】根據(jù)題意,得解得:故答案為【題目點撥】考查平方根的定義,正數(shù)有兩個平方根,它們互為相反數(shù),0的平方根是0,負數(shù)沒有平方根.14、y=160﹣80x(0≤x≤2)【解題分析】
根據(jù)汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【題目詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【題目點撥】本題考查了根據(jù)實際問題確定一次函數(shù)的解析式,找到所求量的等量關(guān)系是解題的關(guān)鍵.15、5【解題分析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【題目詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【題目點撥】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.16、x≤1【解題分析】
二次根式有意義的條件就是被開方數(shù)是非負數(shù),即可求解.【題目詳解】根據(jù)題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【題目點撥】主要考查了二次根式的意義和性質(zhì).性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.三、解答題(共8題,共72分)17、-1,-1,0,1,1【解題分析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關(guān)鍵是明確解一元一次不等式組的方法.18、1.【解題分析】分析:本題涉及乘方、負指數(shù)冪、二次根式化簡、絕對值和特殊角的三角函數(shù)5個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算.19、詳見解析.【解題分析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質(zhì)和等腰三角形性質(zhì),找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點睛:此題考查切線的判定.證明的關(guān)鍵是得到△OCE≌△ODE.20、(1)證明見解析(2)BC=【解題分析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【題目詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).21、(1)詳見解析;(2);(3)4<OC<1.【解題分析】
(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點,結(jié)合題意可得OC取值范圍.【題目詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設(shè)點M為Rt△APO的外心,則M為OA的中點,
∵OA=1,
∴OM=4,
∴當△APO的外心在扇形COD的內(nèi)部時,OM<OC,
∴OC的取值范圍為4<OC<1.【題目點撥】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關(guān)鍵.22、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最省;當0<a<3時,取m=50時費用最省.【解題分析】試題分析:(1)設(shè)甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費用為x萬元,依題意,得625解得:x=25經(jīng)檢驗:x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設(shè)提升兩種套房所需要的費用為W.所以當時,費用最少,即第三種方案費用最少.(3)在(2)的基礎(chǔ)上有:當a=3時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度手機屏幕保護膜定制施工合同
- 2025年度個人對個人房產(chǎn)抵押借款合同3篇
- 2025版養(yǎng)老服務(wù)機構(gòu)投資管理合同范本4篇
- 2025年度影視廣告拍攝合同范本3篇
- 2025年度個人租賃戶外活動場地合同范本3篇
- 二零二五年度牛奶冷鏈物流配送合同模板4篇
- 2025版政府機關(guān)辦公計算機統(tǒng)一采購合同3篇
- 2025年度新型門窗材料采購安裝及技術(shù)研發(fā)合同4篇
- 2025年度智慧城市排水系統(tǒng)升級改造分項合同范本4篇
- 2025年度土地租賃合同中合同解除與違約責任規(guī)定
- 2023-2024學年西安市高二數(shù)學第一學期期末考試卷附答案解析
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 【京東倉庫出庫作業(yè)優(yōu)化設(shè)計13000字(論文)】
- 保安春節(jié)安全生產(chǎn)培訓
- 初一語文上冊基礎(chǔ)知識訓練及答案(5篇)
- 初中班級成績分析課件
- 勞務(wù)合同樣本下載
- 血液透析水處理系統(tǒng)演示
- GB/T 27030-2006合格評定第三方符合性標志的通用要求
- GB/T 13663.2-2018給水用聚乙烯(PE)管道系統(tǒng)第2部分:管材
- 同角三角函數(shù)的基本關(guān)系式同步練習
評論
0/150
提交評論