廣東省深圳市羅湖區(qū)羅湖中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
廣東省深圳市羅湖區(qū)羅湖中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
廣東省深圳市羅湖區(qū)羅湖中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
廣東省深圳市羅湖區(qū)羅湖中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
廣東省深圳市羅湖區(qū)羅湖中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市羅湖區(qū)羅湖中學(xué)2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個2.如圖,一個鐵環(huán)上掛著6個分別編有號碼1,2,3,4,5,6的鐵片.如果把其中編號為2,4的鐵片取下來,再先后把它們穿回到鐵環(huán)上的仼意位置,則鐵環(huán)上的鐵片(無論沿鐵環(huán)如何滑動)不可能排成的情形是()A. B.C. D.3.如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x="1".其中正確的有A.1個 B.2個 C.3個 D.4個4.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大5.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣26.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點,則下列結(jié)論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x17.若正比例函數(shù)y=3x的圖象經(jīng)過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關(guān)系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y28.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.9.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④10.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.11.如圖,內(nèi)接于,若,則A. B. C. D.12.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點的兩個角是對頂角 D.等腰三角形兩底角相等二、填空題:(本大題共6個小題,每小題4分,共24分.)13.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.14.不等式組的解集為____.15.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,F(xiàn)C=2,則EF的長為_____.16.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是_______.17.已知函數(shù)是關(guān)于的二次函數(shù),則__________.18.計算(2a)3的結(jié)果等于__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).20.(6分)計算:﹣4cos45°+()﹣1+|﹣2|.21.(6分)我校對全校學(xué)生進(jìn)傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機(jī)抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補(bǔ)充完整;(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則我校被抽取的學(xué)生中有人達(dá)標(biāo);(3)若我校學(xué)生有1200人,請你估計此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?22.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.23.(8分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)24.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現(xiàn):(1)點O到弦AB的距離是,當(dāng)BP經(jīng)過點O時,∠ABA′=;(2)當(dāng)BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時,NA′與半圓O相切,當(dāng)α=°時,點O′落在上.(3)當(dāng)線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.25.(10分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.26.(12分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).27.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【題目點撥】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強(qiáng),難度較大.2、D【解題分析】

摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,無論將鐵片2,4穿回哪里,鐵片1,1,5,6在鐵環(huán)上的順序不變,觀察四個選擇即可得出結(jié)論.【題目詳解】解:摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,∵選項A,B,C中鐵片順序為1,1,5,6,選項D中鐵片順序為1,5,6,1.故選D.【題目點撥】本題考查了規(guī)律型:圖形的變化類,找準(zhǔn)鐵片1,1,5,6在鐵環(huán)上的順序不變是解題的關(guān)鍵.3、B【解題分析】試題分析:∵當(dāng)y1=y2時,即時,解得:x=0或x=2,∴由函數(shù)圖象可以得出當(dāng)x>2時,y2>y1;當(dāng)0<x<2時,y1>y2;當(dāng)x<0時,y2>y1.∴①錯誤.∵當(dāng)x<0時,-直線的值都隨x的增大而增大,∴當(dāng)x<0時,x值越大,M值越大.∴②正確.∵拋物線的最大值為4,∴M大于4的x值不存在.∴③正確;∵當(dāng)0<x<2時,y1>y2,∴當(dāng)M=2時,2x=2,x=1;∵當(dāng)x>2時,y2>y1,∴當(dāng)M=2時,,解得(舍去).∴使得M=2的x值是1或.∴④錯誤.綜上所述,正確的有②③2個.故選B.4、A【解題分析】分析:根據(jù)平均數(shù)的計算公式進(jìn)行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.5、C【解題分析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【題目詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【題目點撥】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點,三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.6、B【解題分析】

根據(jù)的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【題目詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【題目點撥】此題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于把三點代入,在根據(jù)a的大小來判斷7、A【解題分析】

分別把點A(?1,y1),點B(?1,y1)代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【題目詳解】解:∵點A(?1,y1),點B(?1,y1)是函數(shù)y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【題目點撥】本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,即一次函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式.8、B【解題分析】

根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【題目詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【題目點撥】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.9、B【解題分析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【題目詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【題目點撥】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.10、C【解題分析】

根據(jù)軸對稱圖形和中心對稱圖形的概念,對各個選項進(jìn)行判斷,即可得到答案.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關(guān)鍵是熟練掌握概念進(jìn)行分析判斷.11、B【解題分析】

根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計算即可.【題目詳解】解:由圓周角定理得,,,,故選:B.【題目點撥】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.12、D【解題分析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

根據(jù)圖形可得每增加一個金魚就增加6根火柴棒即可解答.【題目詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數(shù)是8+6(n-1)=6n+2.故答案為6n+2【題目點撥】本題考查數(shù)字規(guī)律問題,通過歸納與總結(jié),得到其中的規(guī)律是解題關(guān)鍵.14、x>1【解題分析】

分別解出兩不等式的解集再求其公共解.【題目詳解】由①得:x>1

由②得:x>∴不等式組的解集是x>1.【題目點撥】求不等式的解集須遵循以下原則:同大取較大,同小取較?。〈蟠笮≈虚g找,大大小小解不了.15、【解題分析】

由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【題目詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【題目點撥】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、勾股定理,在四邊形中常利用三角形全等的性質(zhì)和勾股定理計算線段的長.16、【解題分析】試題解析:∵兩個同心圓被等分成八等份,飛鏢落在每一個區(qū)域的機(jī)會是均等的,其中白色區(qū)域的面積占了其中的四等份,∴P(飛鏢落在白色區(qū)域)=.17、1【解題分析】

根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【題目詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【題目點撥】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項的系數(shù)不等于0”.18、8【解題分析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進(jìn)行計算即可考點:(1)、冪的乘方;(2)、積的乘方三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)是;(2)見解析;(3)150°.【解題分析】

(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【題目詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【題目點撥】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等是解決問題的關(guān)鍵.20、4【解題分析】分析:代入45°角的余弦函數(shù)值,結(jié)合“負(fù)整數(shù)指數(shù)冪的意義”和“二次根式的相關(guān)運算法則”進(jìn)行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的意義:(為正整數(shù))”是正確解答本題的關(guān)鍵.21、(1)120,補(bǔ)圖見解析;(2)96;(3)960人.【解題分析】

(1)由“不合格”的人數(shù)除以占的百分比求出總?cè)藬?shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補(bǔ)全統(tǒng)計圖即可;

(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總?cè)藬?shù)即可得到結(jié)果;

(3)求出達(dá)標(biāo)占的百分比,乘以1200即可得到結(jié)果.【題目詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補(bǔ)全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達(dá)標(biāo)的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達(dá)標(biāo)的學(xué)生有960人.故答案為(1)120;(2)96人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解題分析】

(1)根據(jù)點A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點B坐標(biāo)代入反比例函數(shù)解析式,求出n的值,進(jìn)而求出一次函數(shù)解析式(2)根據(jù)點A和點B的坐標(biāo)及圖象特點,即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點A和點B的坐標(biāo)求得三角形以BC為底的高是10,從而求得三角形ABC的面積【題目詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.23、通信塔CD的高度約為15.9cm.【解題分析】

過點A作AE⊥CD于E,設(shè)CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關(guān)于x的方程,求出方程的解即可.【題目詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設(shè)CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【題目點撥】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關(guān)鍵.24、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解題分析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當(dāng)O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【題目詳解】發(fā)現(xiàn):(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時,點O′在半圓上,∴當(dāng)0°<α<30°時點O′在半圓內(nèi),線段NO′與半圓只有一個公共點B;當(dāng)α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當(dāng)α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【題目點撥】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關(guān)鍵.25、(1)證明見解析;(2)1.【解題分析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個直角即可證明△ADF≌△MPG,從而得出對應(yīng)邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據(jù)旋轉(zhuǎn),得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據(jù)勾股定理和等量代換求出邊長DF的值;根據(jù)相似三角形得出對應(yīng)邊成比例求出GH的值,從而求出高PH的值;最后根據(jù)面積公式得出【題目詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論