版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年北京首都師范大第二附屬中學(xué)中考數(shù)學(xué)五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.估計的值在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間2.“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達(dá)終點10分鐘D.烏龜追上兔子用了20分鐘3.如圖,數(shù)軸A、B上兩點分別對應(yīng)實數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+4.如圖,直線y=kx+b與y軸交于點(0,3)、與x軸交于點(a,0),當(dāng)a滿足-3≤a<0時,k的取值范圍是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥35.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.56.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解7.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.48.已知一個多邊形的每一個外角都相等,一個內(nèi)角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.129.如圖是小明在物理實驗課上用量筒和水測量鐵塊A的體積實驗,小明在勻速向上將鐵塊提起,直至鐵塊完全露出水面一定高度的過程中,則下圖能反映液面高度h與鐵塊被提起的時間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.10.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.1011.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.12.為了配合“我讀書,我快樂”讀書節(jié)活動,某書店推出一種優(yōu)惠卡,每張卡售價20元,憑卡購書可享受8折優(yōu)惠,小慧同學(xué)到該書店購書,她先買優(yōu)惠卡再憑卡付款,結(jié)果節(jié)省了10元,若此次小慧同學(xué)不買卡直接購書,則她需付款:A.140元 B.150元 C.160元 D.200元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.14.因式分解:2x15.如圖,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點旋轉(zhuǎn)60°叫一次操作,則經(jīng)過6次這樣的操作菱形中心(對角線的交點)O所經(jīng)過的路徑總長為_____.16.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為_____.17.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應(yīng)的度數(shù)是____.18.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當(dāng)頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當(dāng)頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當(dāng)>2時,求EC的長度.20.(6分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.21.(6分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達(dá)C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)22.(8分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關(guān)于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.23.(8分)如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標(biāo).24.(10分)如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).25.(10分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當(dāng)⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當(dāng)點P到達(dá)點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當(dāng)以B、D、E為頂點的三角形是直角三角形時點E的坐標(biāo).26.(12分)某初級中學(xué)對畢業(yè)班學(xué)生三年來參加市級以上各項活動獲獎情況進(jìn)行統(tǒng)計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業(yè)時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.27.(12分)計算:.先化簡,再求值:,其中.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】∵,∴.即的值在6和7之間.故選C.2、D【解題分析】分析:根據(jù)圖象得出相關(guān)信息,并對各選項一一進(jìn)行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達(dá)終點,烏龜是用50分鐘到達(dá)終點,兔子比烏龜晚到達(dá)終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進(jìn)行判斷是解題的關(guān)鍵.3、C【解題分析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【題目詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【題目點撥】本題考查了實數(shù)與數(shù)軸的對應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).4、C【解題分析】
解:把點(0,2)(a,0)代入y=kx+b,得b=2.則a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故選C.【題目點撥】本題考查一次函數(shù)與一元一次不等式,屬于綜合題,難度不大.5、C【解題分析】
極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進(jìn)行分析,即可得出答案.【題目詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項錯誤;
B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;
C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;
D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;
故選:C.【題目點撥】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.6、A【解題分析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.7、D【解題分析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進(jìn)行計算,即可得到答案.【題目詳解】mn+1=(2m﹣n)+1當(dāng)2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【題目點撥】本題考查代數(shù)式,解題的關(guān)鍵是掌握整體代入法.8、A【解題分析】試題分析:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點:多邊形內(nèi)角與外角.9、B【解題分析】根據(jù)題意,在實驗中有3個階段,①、鐵塊在液面以下,液面得高度不變;②、鐵塊的一部分露出液面,但未完全露出時,液面高度降低;③、鐵塊在液面以上,完全露出時,液面高度又維持不變;分析可得,B符合描述;故選B.10、C【解題分析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.11、A【解題分析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【題目點撥】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點的位置.12、B【解題分析】試題分析:此題的關(guān)鍵描述:“先買優(yōu)惠卡再憑卡付款,結(jié)果節(jié)省了人民幣10元”,設(shè)李明同學(xué)此次購書的總價值是人民幣是x元,則有:20+0.8x=x﹣10解得:x=150,即:小慧同學(xué)不憑卡購書的書價為150元.故選B.考點:一元一次方程的應(yīng)用二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解題分析】
試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).14、2(x+3)(x﹣3).【解題分析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點:因式分解.15、【解題分析】
第一次旋轉(zhuǎn)是以點A為圓心,那么菱形中心旋轉(zhuǎn)的半徑就是OA,解直角三角形可求出OA的長,圓心角是60°.第二次還是以點A為圓心,那么菱形中心旋轉(zhuǎn)的半徑就是OA,圓心角是60°.第三次就是以點B為旋轉(zhuǎn)中心,OB為半徑,旋轉(zhuǎn)的圓心角為60度.旋轉(zhuǎn)到此菱形就又回到了原圖.故這樣旋轉(zhuǎn)6次,就是2個這樣的弧長的總長,進(jìn)而得出經(jīng)過6次這樣的操作菱形中心O所經(jīng)過的路徑總長.【題目詳解】解:∵菱形ABCD中,AB=4,∠C=60°,∴△ABD是等邊三角形,BO=DO=2,AO==,第一次旋轉(zhuǎn)的弧長=,∵第一、二次旋轉(zhuǎn)的弧長和=+=,第三次旋轉(zhuǎn)的弧長為:,故經(jīng)過6次這樣的操作菱形中心O所經(jīng)過的路徑總長為:2×(+)=.故答案為:.【題目點撥】本題考查菱形的性質(zhì),翻轉(zhuǎn)的性質(zhì)以及解直角三角形的知識.16、4【解題分析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點:等邊三角形的判定與性質(zhì);平行線的性質(zhì).17、60.【解題分析】
首先設(shè)半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【題目詳解】設(shè)半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應(yīng)的量角器上的刻度數(shù)是60°,故答案為:60.【題目點撥】本題考查了切線的性質(zhì)、全等三角形的判定與性質(zhì)以及垂直平分線的性質(zhì),解題的關(guān)鍵是掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.18、1【解題分析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設(shè)出點A的坐標(biāo),然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進(jìn)而求得k的值即可.【題目詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設(shè)點A的坐標(biāo)為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【題目點撥】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.②CE+CF=BC(3)【解題分析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關(guān)系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【題目詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【題目點撥】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì),相似三角形的判定和性質(zhì)等知識的綜合運用,解題的關(guān)鍵是靈活運用這些知識解決問題,學(xué)會添加輔助線構(gòu)造相似三角形.20、(1)1;(2)【解題分析】(1)由勾股定理求AB,設(shè)⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據(jù)CG平分直角∠ACB可知△PCG為等腰直角三角形,設(shè)PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設(shè)GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.21、30米【解題分析】
設(shè)AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【題目詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設(shè)AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD為30米.【題目點撥】本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.22、(1)作圖見解析;;(2)作圖見解析.【解題分析】試題分析:(1)通過數(shù)格子可得到點P關(guān)于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網(wǎng)格結(jié)合矩形的性質(zhì)以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.23、(1);(2);(3)或.【解題分析】
(1)根據(jù)圖象經(jīng)過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),可利用待定系數(shù)法求出二次函數(shù)解析式;
(2)根據(jù)直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點的坐標(biāo),即可利用待定系數(shù)法求出一次函數(shù)解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點的坐標(biāo).【題目詳解】(1)拋物線的圖象經(jīng)過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點式為,拋物線對稱軸為直線,∴對稱軸與軸的交點C的坐標(biāo)為,,設(shè)點B的坐標(biāo)為,,則,,∴∴點B的坐標(biāo)為,設(shè)直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當(dāng)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,
設(shè)⊙P與AB相切于點F,與x軸相切于點C,如圖1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標(biāo)為(2,);②設(shè)⊙P與AB相切于點F,與軸相切于點C,如圖2:∴PF⊥AB,PF=PC,
∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標(biāo)為(2,-6),綜上所述,與直線和都相切時,或.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求一函數(shù)的解析式、二次函數(shù)的解析式及相似三角形的判定和性質(zhì)、切線的判定和性質(zhì),根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.24、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標(biāo)為或或或.【解題分析】分析:(1)先把點A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設(shè)直線BC與對稱軸x=-1的交點為M,此時MA+MC的值最?。褁=-1代入直線y=x+3得y的值,即可求出點M坐標(biāo);(3)設(shè)P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標(biāo).詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對稱軸為,且拋物線經(jīng)過,∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對稱軸的交點為,則此時的值最小,把代入直線得,∴.即當(dāng)點到點的距離與到點的距離之和最小時的坐標(biāo)為.(注:本題只求坐標(biāo)沒說要求證明為何此時的值最小,所以答案未證明的值最小的原因).(3)設(shè),又,,∴,,,①若點為直角頂點,則,即:解得:,②若點為直角頂點,則,即:解得:,③若點為直角頂點,則,即:解得:,.綜上所述的坐標(biāo)為或或或.點睛:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對稱性質(zhì)確定線段的最小長度、難度不是很大,是一道不錯的中考壓軸題.25、(4)4;(2);(4)點E的坐標(biāo)為(4,2)、(,)、(4,2).【解題分析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛州職業(yè)技術(shù)學(xué)院《民用航空法》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛西科技職業(yè)學(xué)院《醫(yī)學(xué)檢驗進(jìn)展(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南科技學(xué)院《心理咨詢與身心健康》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛東學(xué)院《傳染科護理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 法警安全檢查課件
- 中心對稱圖片課件
- 七年級語文上冊第五單元18狼課后習(xí)題新人教版
- 三年級品德與社會下冊第一單元在愛的陽光下第二課讀懂爸爸媽媽的心教案新人教版
- 三年級科學(xué)上冊第四單元人與水教材說明首師大版
- 2021一建考試《建設(shè)工程項目管理》題庫試卷考點題庫及參考答案解析五
- 干法讀書會分享
- 進(jìn)階練12 材料作文(滿分范文20篇)(解析版)-【挑戰(zhàn)中考】備戰(zhàn)2024年中考語文一輪總復(fù)習(xí)重難點全攻略(浙江專用)
- 骨質(zhì)疏松的中醫(yī)中藥治療
- 衛(wèi)浴銷售部門年終總結(jié)
- 機場安檢突發(fā)事件應(yīng)急預(yù)案
- 2024年高考真題-化學(xué)(天津卷) 含解析
- 安徽省蕪湖市2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 2024年招投標(biāo)培訓(xùn)
- 人教A版(新教材)高中數(shù)學(xué)選擇性必修第三冊學(xué)案2:7 1 1 條件概率
- 部編版三年級上冊語文期末復(fù)習(xí)資料
- 北京郵電大學(xué)《數(shù)據(jù)庫系統(tǒng)》2023-2024學(xué)年期末試卷
評論
0/150
提交評論