高考全國2卷理科數(shù)學(xué)帶答案及高考全國2卷文科數(shù)學(xué)帶答案_第1頁
高考全國2卷理科數(shù)學(xué)帶答案及高考全國2卷文科數(shù)學(xué)帶答案_第2頁
高考全國2卷理科數(shù)學(xué)帶答案及高考全國2卷文科數(shù)學(xué)帶答案_第3頁
高考全國2卷理科數(shù)學(xué)帶答案及高考全國2卷文科數(shù)學(xué)帶答案_第4頁
高考全國2卷理科數(shù)學(xué)帶答案及高考全國2卷文科數(shù)學(xué)帶答案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)本試卷共23題,共150分,共4頁??荚嚱Y(jié)束后,將本試卷和答題卡一并交回。注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折疊、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A. B. C. D.2.已知集合,則中元素的個(gè)數(shù)為A.9 B.8 C.5 D.43.函數(shù)的圖象大致為4.已知向量,滿足,,則A.4 B.3 C.2 D.05.雙曲線的離心率為,則其漸近線方程為A. B. C. D.6.在中,,,,則A. B. C. D.7.為計(jì)算,設(shè)計(jì)了右側(cè)的程序框圖,則在空白框中應(yīng)填入A.B.C.D.8.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如.在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是A. B. C. D.9.在長方體中,,,則異面直線與所成角的余弦值為A. B. C. D.10.若在是減函數(shù),則的最大值是A. B. C. D.11.已知是定義域?yàn)榈钠婧瘮?shù),滿足.若,則A. B.0 C.2 D.5012.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為__________.14.若滿足約束條件則的最大值為__________.15.已知,,則__________.16.已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23為選考題。考生根據(jù)要求作答。(一)必考題:共60分。17.(12分)記為等差數(shù)列的前項(xiàng)和,已知,.(1)求的通項(xiàng)公式;(2)求,并求的最小值.18.(12分)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.19.(12分)設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線與交于,兩點(diǎn),.(1)求的方程;(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.20.(12分)如圖,在三棱錐中,,,為的中點(diǎn).(1)證明:平面;(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值.21.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求.(二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。22.[選修4-4:坐標(biāo)系與參數(shù)方程](10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).(1)求和的直角坐標(biāo)方程;(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.23.[選修4-5:不等式選講](10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若,求的取值范圍.絕密★啟用前2018年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)試題參考答案一、選擇題1.D 2.A 3.B 4.B 5.A 6.A7.B 8.C 9.C 10.A 11.C 12.D二、填空題13. 14.9 15. 16.三、解答題17.解:(1)設(shè)的公差為d,由題意得.由得d=2.所以的通項(xiàng)公式為.(2)由(1)得.所以當(dāng)n=4時(shí),取得最小值,最小值為?16.18.解:(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為(億元).利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為(億元).(2)利用模型②得到的預(yù)測值更可靠.理由如下:(ⅰ)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒有隨機(jī)散布在直線上下.這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢.2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年的數(shù)據(jù)建立的線性模型可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢,因此利用模型②得到的預(yù)測值更可靠.(ⅱ)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測值的增幅比較合理.說明利用模型②得到的預(yù)測值更可靠.以上給出了2種理由,考生答出其中任意一種或其他合理理由均可得分.19.解:(1)由題意得,l的方程為.設(shè),由得.,故.所以.由題設(shè)知,解得(舍去),.因此l的方程為.(2)由(1)得AB的中點(diǎn)坐標(biāo)為,所以AB的垂直平分線方程為,即.設(shè)所求圓的圓心坐標(biāo)為,則解得或因此所求圓的方程為或.20.解:(1)因?yàn)?,為的中點(diǎn),所以,且.連結(jié).因?yàn)?,所以為等腰直角三角形,且,.由知.由知平面.?)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.由已知得取平面的法向量.設(shè),則.設(shè)平面的法向量為.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以與平面所成角的正弦值為.21.解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③若,即,由于,所以在有一個(gè)零點(diǎn),由(1)知,當(dāng)時(shí),,所以.故在有一個(gè)零點(diǎn),因此在有兩個(gè)零點(diǎn).綜上,在只有一個(gè)零點(diǎn)時(shí),.22..解:(1)曲線的直角坐標(biāo)方程為.當(dāng)時(shí),的直角坐標(biāo)方程為,當(dāng)時(shí),的直角坐標(biāo)方程為.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,整理得關(guān)于的方程.①因?yàn)榍€截直線所得線段的中點(diǎn)在內(nèi),所以①有兩個(gè)解,設(shè)為,,則.又由①得,故,于是直線的斜率.23.解:(1)當(dāng)時(shí),可得的解集為.(2)等價(jià)于.而,且當(dāng)時(shí)等號(hào)成立.故等價(jià)于.由可得或,所以的取值范圍是.21(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求.解:(1),.當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞減,在單調(diào)遞增,故,在單調(diào)遞增.因?yàn)?,所以.?)當(dāng)時(shí),設(shè),則,在只有一個(gè)零點(diǎn)等價(jià)于在只有一個(gè)零點(diǎn).,當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞減,在單調(diào)遞增,故.若,則,在沒有零點(diǎn).若,則,在有唯一零點(diǎn).若,因?yàn)椋桑?)知當(dāng)時(shí),,,故存在,使.,普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)本試卷共23題,共150分,共4頁。考試結(jié)束后,將本試卷和答題卡一并交回。注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折疊、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A. B. C. D.2.已知集合,則A. B. C. D.3.函數(shù)的圖象大致為4.已知向量,滿足,,則A.4 B.3 C.2 5.從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中2人都是女同學(xué)的概率為A. B. C. D.6.雙曲線的離心率為,則其漸近線方程為A. B. C. D.7.在中,,,,則A. B. C. D.8.為計(jì)算,設(shè)計(jì)了右側(cè)的程序框圖,則在空白框中應(yīng)填入A.B.C.D.9.在長方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.10.若在是減函數(shù),則的最大值是A. B. C. D.11.已知,是橢圓的兩個(gè)焦點(diǎn),是上的一點(diǎn),若,且,則的離心率為A. B. C. D.12.已知是定義域?yàn)榈钠婧瘮?shù),滿足.若,則A. B.0 C.2 D.50二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為__________.14.若滿足約束條件則的最大值為__________.15.已知,則__________.16.已知圓錐的頂點(diǎn)為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23為選考題??忌鶕?jù)要求作答。(一)必考題:共60分。17.(12分)記為等差數(shù)列的前項(xiàng)和,已知,.(1)求的通項(xiàng)公式;(2)求,并求的最小值.18.(12分)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.19.(12分)如圖,在三棱錐中,,,為的中點(diǎn).(1)證明:平面;(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.20.(12分)設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線與交于,兩點(diǎn),.(1)求的方程;(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.21.(12分)已知函數(shù).(1)若,求的單調(diào)區(qū)間;(2)證明:只有一個(gè)零點(diǎn).(二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。22.[選修4-4:坐標(biāo)系與參數(shù)方程](10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).(1)求和的直角坐標(biāo)方程;(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.23.[選修4-5:不等式選講](10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若,求的取值范圍.絕密★啟用前2018年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)試題參考答案一、選擇題1.D 2.C 3.B 4.B 5.D 6.A7.A 8.B 9.C 10.C 11.D 12.C二、填空題13.y=2x–2 14.9 15. 6.8π三、解答題17.解:(1)設(shè){an}的公差為d,由題意得3a1+3d由a1=–7得d=2.所以{an}的通項(xiàng)公式為an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以當(dāng)n=4時(shí),Sn取得最小值,最小值為–16.18.解:(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為=–30.4+13.5×19=226.1(億元).利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為=99+17.5×9=256.5(億元).(2)利用模型②得到的預(yù)測值更可靠.理由如下:(i)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y=–30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢.2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢,因此利用模型②得到的預(yù)測值更可靠.(ii)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測值的增幅比較合理,說明利用模型②得到的預(yù)測值更可靠.以上給出了2種理由,考生答出其中任意一種或其他合理理由均可得分.19.解:(1)因?yàn)锳P=CP=AC=4,O為AC的中點(diǎn),所以O(shè)P⊥AC,且OP=.連結(jié)OB.因?yàn)锳B=BC=,所以△ABC為等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足為H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的長為點(diǎn)C到平面POM的距離.由題設(shè)可知OC==2,CM==,∠ACB=45°.所以O(shè)M=,CH==.所以點(diǎn)C到平面P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論