![非參數(shù)分類方法-分析歸納很到位_第1頁](http://file4.renrendoc.com/view10/M00/22/39/wKhkGWWMk-qAMW-yAAFL3GWVppU371.jpg)
![非參數(shù)分類方法-分析歸納很到位_第2頁](http://file4.renrendoc.com/view10/M00/22/39/wKhkGWWMk-qAMW-yAAFL3GWVppU3712.jpg)
![非參數(shù)分類方法-分析歸納很到位_第3頁](http://file4.renrendoc.com/view10/M00/22/39/wKhkGWWMk-qAMW-yAAFL3GWVppU3713.jpg)
![非參數(shù)分類方法-分析歸納很到位_第4頁](http://file4.renrendoc.com/view10/M00/22/39/wKhkGWWMk-qAMW-yAAFL3GWVppU3714.jpg)
![非參數(shù)分類方法-分析歸納很到位_第5頁](http://file4.renrendoc.com/view10/M00/22/39/wKhkGWWMk-qAMW-yAAFL3GWVppU3715.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
非參數(shù)分類方法-分析歸納很到位.pptPatternRecognitionLab501TongjiUniversity2NonparametricTechniqueOutlineDensityEstimationParzenWindow
PatternRecognitionLab501TongjiUniversity3DensityEstimation–Overview(1)Inprobabilityandstatistics,densityestimationistheconstructionofanestimate,basedonobserveddata,ofanunobservableunderlyingprobabilitydensityfunction.Therearetwobasicapproachestoperformdensityestimation:Parametric:thedensityfunctionisassumed(i.e.,Gaussian)andtheparametersofthefunction(i.e.,meanandvariance)arethenoptimizedbyfittingthemodeltothedatasetNon-parametric:nofunctionalformforthedensityfunctionisassumed,andthedensityestimatesisdrivenentirelybythedataPatternRecognitionLab501TongjiUniversity4DensityEstimation–Overview(2)BinomialdistributionPatternRecognitionLab501TongjiUniversity5DensityEstimation–Overview(3)Whenn→∞,thevarianceis0,wecanusek/ntoestimateP.PatternRecognitionLab501TongjiUniversity6DensityEstimation–Overview(4)ThisestimatebecomesmoreaccurateasweincreasethenumberofsamplepointsNandshrinkthevolumeVImportantconditionPatternRecognitionLab501TongjiUniversity7DensityEstimation–Overview(5)InpracticethevalueofN(thetotalnumberofexamples)isfixedInordertoimprovetheaccuracyoftheestimatep(x)wecouldletVapproachzero,butthentheregionwouldthenbecomesosmallthatitwouldenclosenoexampleswewillhavetofindacompromisevalueforthevolumeVLargeenoughtoincludeenoughexampleswithinSmallenoughtosupporttheassumptionthatp(x)isconstantwithinInconclusion,thegeneralexpressionfornon-parametricdensityestimationbecomesPatternRecognitionLab501TongjiUniversity8DensityEstimation–Overview(6)Whenapplyingthisresulttopracticaldensityestimationproblems,twobasicapproachescanbeadopted:WecanchooseafixedvalueofthevolumeVanddeterminekfromthedata.ThisleadstomethodscommonlyreferredtoasKernelDensityEstimation(KDE),i.e.ParzenWindowsWecanchooseafixedvalueofkanddeterminethecorrespondingvolumeVfromthedata.ThisgivesrisetothekNearestNeighbor(kNN)
approach.PatternRecognitionLab501TongjiUniversity9ParzenWindows(1)PatternRecognitionLab501TongjiUniversity10ParzenWindows(2)PatternRecognitionLab501TongjiUniversity11ParzenWindows(3)NumericexerciseGiventhedatasetbelow,useParzenwindowstoestimatethedensityp(x)aty=3,10,15.Useabandwidthofh=4X={4,5,5,6,12,14,15,15,16,17}PatternRecognitionLab501TongjiUniversity12PatternRecognitionLab501TongjiUniversity13Ofcourse,thewindowfunctioncanbeotherfunction,forexampleGaussianfunction(for1-D).ThisissimplytheaverageofnGaussianfunctionswitheachdatapointasacenter.needstobepredetermined.PatternRecognitionLab501TongjiUniversity14PatternRecognitionLab501TongjiUniversity15ParzenWindows(4)Illustrations(P169)PatternRecognitionLab501TongjiUniversity16PatternRecognitionLab501TongjiUniversity17PatternRecognitionLab501TongjiUniversity18PatternRecognitionLab501TongjiUniversity19ParzenwindowbasedclassificationPatternRecognitionLab501TongjiUniversity20PatternRecognitionLab501TongjiUniversity21h=1h=0.5h=0.1PatternRecognitionLab501TongjiUniversity22kNNDensityEstimation(1)Oneofthedifficultieswiththekernelapproachtodensityestimationisthattheparameterh
governingthekernelwidthisfixedforallkernels.Inregionsofhighdatadensity,alargevalueofhmayleadtoover-smoothingandawashingoutofstructurethatmightotherwisebeextractedfromthedata.ReducinghmayleadtonoisyestimatesPatternRecognitionLab501TongjiUniversity23kNNDensityEstimation(2)Thegeneralexpressionfornonparametricdensityestimationis:Atthattime,wementionedthatthisestimatecouldbecomputedbyFixingthevolumeVanddeterminingthenumberkofdatapointsinsideV(KernelDensity)FixingthevalueofkanddeterminingtheminimumvolumeVthatencompasseskpointsinthedataset(kNN)P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 推動高標(biāo)準(zhǔn)辦學(xué)水平提升的實(shí)操方案
- 出售叉車門架子合同范例
- 出售塔吊電纜合同范本
- 利于甲方合同范例
- 買賣牛肉合同范本
- 2025年P(guān)LC行業(yè)市場趨勢分析報(bào)告
- 出售高欄貨車合同范本
- 農(nóng)村房屋框架購買合同范本
- 2025年度水利工程合同索賠預(yù)防與糾紛處理機(jī)制
- 傳媒公司主播簽約合同范本
- 危險(xiǎn)物品管理制度
- 門靜脈炎護(hù)理課件
- 重慶八中2024屆高三12月高考適應(yīng)性月考卷(四) 語文試卷(含答案)
- 基礎(chǔ)研究成果向臨床轉(zhuǎn)化的實(shí)踐與挑戰(zhàn)
- 建筑構(gòu)造(下冊)
- 電流互感器試驗(yàn)報(bào)告
- 蔣中一動態(tài)最優(yōu)化基礎(chǔ)
- 華中農(nóng)業(yè)大學(xué)全日制專業(yè)學(xué)位研究生實(shí)踐單位意見反饋表
- 付款申請英文模板
- 七年級英語閱讀理解10篇(附答案解析)
- 抖音來客本地生活服務(wù)酒旅商家代運(yùn)營策劃方案
評論
0/150
提交評論