數(shù)學(xué)人教A版(2019)選擇性必修第三冊6.2.1排列_第1頁
數(shù)學(xué)人教A版(2019)選擇性必修第三冊6.2.1排列_第2頁
數(shù)學(xué)人教A版(2019)選擇性必修第三冊6.2.1排列_第3頁
數(shù)學(xué)人教A版(2019)選擇性必修第三冊6.2.1排列_第4頁
數(shù)學(xué)人教A版(2019)選擇性必修第三冊6.2.1排列_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1第6章《計(jì)數(shù)原理》人教A版2019選擇性必修第三冊6.2.1排列1.通過實(shí)例理解排列的概念.2.能應(yīng)用排列知識解決簡單的實(shí)際問題.3.通過學(xué)習(xí)排列的概念,進(jìn)一步提升數(shù)學(xué)抽象及邏輯推理素養(yǎng)學(xué)習(xí)目標(biāo)

問題1

從甲、乙、丙3名同學(xué)中選出2名參加一項(xiàng)活動,其中1名同學(xué)參加上午的活動,另1名同學(xué)參加下午的活動,有幾種不同的選法?

此時(shí),要完成的一件事是“選出2名同學(xué)參加活動,1名同學(xué)參加上午的活動,另1名同學(xué)參加下午的活動”,可以分兩個(gè)步驟:第1步,確定參加上午活動的同學(xué),從3人中任選1人,有3種選法;第2步,確定參加下午活動的同學(xué),當(dāng)參加上午活動的同學(xué)確定后,參加下午活動的同學(xué)只能從剩下的2人中去選,有2種選法.環(huán)節(jié)一:創(chuàng)設(shè)情境,引入課題如果把上面問題中被取出的對象叫做元素,那么問題可敘述為:從3個(gè)不同的元素a,b,c中任意取出2個(gè),并按一定的順序排成一列,共有多少種不同的排列方法?所有不同的排列是ab,ac,ba,bc,cb,ca.問題1中的“順序”是什么?這6種不同的選法如圖6.2-1所示.

問題2從1,2,3,4這4個(gè)數(shù)字中,每次取出3個(gè)排成一個(gè)三位數(shù),共可得到多少個(gè)不同的三位數(shù)?

顯然,從4個(gè)數(shù)字中,每次取出3個(gè),按“百位、十位、個(gè)位”的順序排成一列,就得到一個(gè)三位數(shù).因此有多少種不同的排列方法就有多少個(gè)不同的三位數(shù).可以分三個(gè)步驟來解決這個(gè)問題:第1步,確定百位上的數(shù)字,從1,2,3,4這4個(gè)數(shù)字中任取1個(gè),有4種方法;第2步,確定十位上的數(shù)字,當(dāng)百位上的數(shù)字確定后,十位上的數(shù)字只能從余下的3個(gè)數(shù)字中去取,有3種方法;第3步,確定個(gè)位上的數(shù)字,當(dāng)百位、十位上的數(shù)字確定后,個(gè)位的數(shù)字只能從余下的2個(gè)數(shù)字中去取,有2種方法.環(huán)節(jié)二:觀察分析,感知概念根據(jù)分步乘法計(jì)數(shù)原理,從1,2,3,4這4個(gè)不同的數(shù)字中,每次取出3個(gè)數(shù)字,按“百位、十位、個(gè)位”的順序排成一列,不同的排法種數(shù)為因而共可得到24個(gè)不同的三位數(shù),如圖6.2-2所示.由此可寫出所有的三位數(shù):123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.問題2中的“順序”是什么?上述問題1,2的共同特點(diǎn)是什么?你能將它們推廣到一般情形嗎?問題1和問題2都是研究從一些不同元素中取出部分元素,并按照一定的順序排成一列的方法數(shù).

根據(jù)排列的定義,兩個(gè)排列相同的充要條件是:兩個(gè)排列的元素完全相同,且元素的排列順序也相同.

例如,在問題1中,“甲乙”與“甲丙”的元素不完全相同,它們是不同的排列;“甲乙”與“乙甲”雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列.又如,在問題2中,123與134的元素不完全相同,它們是不同的排列;123與132雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列.例1

某省中學(xué)生足球賽預(yù)選賽每組有6支隊(duì),每支隊(duì)都要與同組的其他各隊(duì)在主、客場分別比賽1場,那么每組共進(jìn)行多少場比賽?分析:每組任意2支隊(duì)之間進(jìn)行的1場比賽,可以看作是從該組6支隊(duì)中選取2支,按“主隊(duì)、客隊(duì)”的順序排成的一個(gè)排列.環(huán)節(jié)四:辨析理解,深化概念例2(1)一張餐桌上有5盤不同的菜,甲、乙、丙3名同學(xué)每人從中各取1盤菜,共有多少種不同的取法?分析:3名同學(xué)每人從5盤不同的菜中取1盤菜,可看作是從這5盤菜中任取3盤,放在3個(gè)位置(給3名同學(xué))的一個(gè)排列;而3名同學(xué)每人從食堂窗口的5種菜中選1種,每人都有5種選法,不能看成一個(gè)排列.環(huán)節(jié)五:課堂練習(xí),鞏固運(yùn)用例2(2)學(xué)校食堂的一個(gè)窗口共賣5種菜,甲、乙、丙3名同學(xué)每人從中選一種,共有多少種不同的選法?

分析:3名同學(xué)每人從5盤不同的菜中取1盤菜,可看作是從這5盤菜中任取3盤,放在3個(gè)位置(給3名同學(xué))的一個(gè)排列;而3名同學(xué)每人從食堂窗口的5種菜中選1種,每人都有5種選法,不能看成一個(gè)排列.一般地,從n個(gè)不同元素中取出m(m≤n)個(gè)元素,并按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列(arrangement).1.排列的定義:2、排列問題的判斷方法:(1)元素的無重復(fù)性

(2)元素的有序性判斷關(guān)鍵是看選出的元素有沒有順序要求。3、利用“樹形圖”法解決簡單排列問題的適用范圍及策略(1)適用范圍:“樹形圖”在解決排列元素個(gè)數(shù)不多的問題時(shí),是一種比較有效的表示方式.(2)策略:在操作中先將元素按一定順序排出,然后以先安排哪個(gè)元素為分類標(biāo)準(zhǔn)進(jìn)行分類,再安排第二個(gè)元素,并按此元素分類,依次進(jìn)行,直到完成一個(gè)排列,這樣能做到不重不漏,然后再按樹形圖寫出排列.環(huán)節(jié)六:歸納總結(jié),反思提升環(huán)節(jié)七:目標(biāo)檢測,作業(yè)布置完成教材:第16?17頁練習(xí)第1,2,3題.練習(xí)

第16頁1.寫出:(1)用0~4這5個(gè)自然數(shù)組成的沒有重復(fù)數(shù)字的全部兩位數(shù);(2)從a,b,c,d中取出2個(gè)字母的所有排列.(1)10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43.(2)ab,ba,ac,ca,ad,da,bc,cb,bd,db,cd,dc.2.一位老師要給4個(gè)班輪流做講座,每個(gè)班講1場,有多少種輪流次序?3.學(xué)校乒乓球團(tuán)體比賽采用5場3勝制(5場單打),每支球隊(duì)派3名運(yùn)動員參賽,前3場比賽每名運(yùn)動員各出場1次,其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論