![2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題_第1頁(yè)](http://file4.renrendoc.com/view11/M01/27/34/wKhkGWWPTLaABwv-AAH3HbGmwF0012.jpg)
![2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題_第2頁(yè)](http://file4.renrendoc.com/view11/M01/27/34/wKhkGWWPTLaABwv-AAH3HbGmwF00122.jpg)
![2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題_第3頁(yè)](http://file4.renrendoc.com/view11/M01/27/34/wKhkGWWPTLaABwv-AAH3HbGmwF00123.jpg)
![2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題_第4頁(yè)](http://file4.renrendoc.com/view11/M01/27/34/wKhkGWWPTLaABwv-AAH3HbGmwF00124.jpg)
![2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題_第5頁(yè)](http://file4.renrendoc.com/view11/M01/27/34/wKhkGWWPTLaABwv-AAH3HbGmwF00125.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆婁底市重點(diǎn)中學(xué)高三下第8周測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知F為拋物線y2=4x的焦點(diǎn),過(guò)點(diǎn)F且斜率為1的直線交拋物線于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.42.中,,為的中點(diǎn),,,則()A. B. C. D.23.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.4.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.5.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)6.若變量,滿(mǎn)足,則的最大值為()A.3 B.2 C. D.107.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.8.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”9.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.10.在中,,,,點(diǎn)滿(mǎn)足,則等于()A.10 B.9 C.8 D.711.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是()A. B. C. D.12.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.14.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.15.已知是夾角為的兩個(gè)單位向量,若,,則與的夾角為_(kāi)_____.16.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.18.(12分)如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.19.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱(chēng).(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.20.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:21.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α122.(10分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【題目詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【題目點(diǎn)撥】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.2、D【解題分析】
在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【題目詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【題目點(diǎn)撥】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.3、C【解題分析】
由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【題目詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【題目點(diǎn)撥】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.4、D【解題分析】
如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿(mǎn)足條件,故,得到答案.【題目詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿(mǎn)足條件.故,,.故,故,.故選:.【題目點(diǎn)撥】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.5、D【解題分析】
將復(fù)數(shù)整理為的形式,分別判斷四個(gè)選項(xiàng)即可得到結(jié)果.【題目詳解】的虛部為,錯(cuò)誤;,錯(cuò)誤;,錯(cuò)誤;,為純虛數(shù),正確本題正確選項(xiàng):【題目點(diǎn)撥】本題考查復(fù)數(shù)的模長(zhǎng)、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類(lèi)的知識(shí),屬于基礎(chǔ)題.6、D【解題分析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【題目詳解】解:畫(huà)出滿(mǎn)足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【題目點(diǎn)撥】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.7、B【解題分析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【題目詳解】設(shè),則.由題意有,所以.故選:B【題目點(diǎn)撥】本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類(lèi)型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題8、B【解題分析】
通過(guò)與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【題目詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【題目點(diǎn)撥】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.9、C【解題分析】
由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【題目詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.10、D【解題分析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【題目詳解】在中,,,,點(diǎn)滿(mǎn)足,可得則==【題目點(diǎn)撥】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.11、C【解題分析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【題目點(diǎn)撥】本題考查了幾何體的三視圖問(wèn)題、組合幾何體的體積問(wèn)題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.12、D【解題分析】
分析可得,再去絕對(duì)值化簡(jiǎn)成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【題目詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長(zhǎng),所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【題目點(diǎn)撥】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【題目詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【題目點(diǎn)撥】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.14、1【解題分析】
根據(jù)均值的定義計(jì)算.【題目詳解】由題意,∴.故答案為:1.【題目點(diǎn)撥】本題考查均值的概念,屬于基礎(chǔ)題.15、【解題分析】
依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計(jì)算可得;【題目詳解】解:因?yàn)槭菉A角為的兩個(gè)單位向量所以,又,所以,,所以,因?yàn)樗?;故答案為:【題目點(diǎn)撥】本題考查平面向量的數(shù)量積的運(yùn)算律,以及夾角的計(jì)算,屬于基礎(chǔ)題.16、32π【解題分析】
設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過(guò)計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長(zhǎng)度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【題目詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號(hào).解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【題目點(diǎn)撥】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析.(2)【解題分析】
(1)通過(guò)證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【題目詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以.因?yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)?,所以平面.因?yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過(guò)點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【題目點(diǎn)撥】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)證明見(jiàn)解析(2)【解題分析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過(guò)點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【題目詳解】解法一:(1)依題意知,因?yàn)椋?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)?,所?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)?,平面,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過(guò)點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【題目點(diǎn)撥】本題主要考查空間面面垂直的的判定及點(diǎn)到面的距離,考查學(xué)生的空間想象能力、推理論證能力、運(yùn)算求解能力.求點(diǎn)到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點(diǎn)到平面的垂線段,進(jìn)行計(jì)算即可.19、(1)e;(2)2.【解題分析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【題目詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱(chēng),所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時(shí),;當(dāng)時(shí),,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因?yàn)?,,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問(wèn)題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.20、(1)(2)見(jiàn)解析【解題分析】
(1)分三種情況去絕對(duì)值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【題目詳解】(1)∵,∴.∴當(dāng)時(shí),取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時(shí),.∴.【題目點(diǎn)撥】本題考查了絕對(duì)值不等式的解法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電站壓力鋼管工程施工方案
- 2025年中國(guó)2,3-二甲基-5-乙基吡嗪市場(chǎng)調(diào)查研究報(bào)告
- 第二單元綜合探究 領(lǐng)悟辯證精髓 處理復(fù)雜問(wèn)題 教學(xué)設(shè)計(jì)-2023-2024學(xué)年高中政治統(tǒng)編版選擇性必修三邏輯與思維
- Module 9 Friendship Unit 2 Writing 教學(xué)設(shè)計(jì)2023-2024學(xué)年外研版英語(yǔ)八年級(jí)下冊(cè)
- 17松鼠 教學(xué)設(shè)計(jì)-2024-2025學(xué)年語(yǔ)文五年級(jí)上冊(cè)統(tǒng)編版
- 第1課時(shí) 比較圖形的面積(教學(xué)設(shè)計(jì))-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 第1課《社戲》教學(xué)設(shè)計(jì) 2023-2024學(xué)年統(tǒng)編版語(yǔ)文八年級(jí)下冊(cè)
- Unit 12 Fire Period 3(教學(xué)設(shè)計(jì))-2024-2025學(xué)年滬教牛津版(深圳用)英語(yǔ) 五年級(jí)上冊(cè)
- 平年與閏年(教學(xué)設(shè)計(jì))-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)滬教版
- 19 古詩(shī)二首 夜宿山寺(教學(xué)設(shè)計(jì))-2024-2025學(xué)年統(tǒng)編版語(yǔ)文二年級(jí)上冊(cè)
- 2024年司法考試完整真題及答案
- 【化學(xué)】高中化學(xué)手寫(xiě)筆記
- 2024年執(zhí)業(yè)藥師繼續(xù)教育專(zhuān)業(yè)答案
- 2024年安全員-C證考試題庫(kù)及答案(1000題)
- 膽管惡性腫瘤護(hù)理查房課件
- 電烤箱的使用方法ppt
- 企事業(yè)單位全面風(fēng)險(xiǎn)清單(含內(nèi)控風(fēng)險(xiǎn)-2023版-雷澤佳編制)
- 2022新教科版六年級(jí)科學(xué)下冊(cè)第二單元《生物的多樣性》全部教案(共7節(jié))
- PEP人教版小學(xué)英語(yǔ)單詞四年級(jí)上冊(cè)卡片(可直接打印)
- 證據(jù)清單(模板)
- 上海市有線電視(衛(wèi)星)接收設(shè)施安裝許可證申請(qǐng)表
評(píng)論
0/150
提交評(píng)論