版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆北京市牛山一中招生全國統(tǒng)一考試仿真卷(六)-高考數(shù)學(xué)試題仿真試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.2.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過計(jì)算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.3.已知函數(shù),若時(shí),恒成立,則實(shí)數(shù)的值為()A. B. C. D.4.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c5.設(shè)集合,集合,則=()A. B. C. D.R6.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.9.函數(shù)的大致圖象為A. B.C. D.10.已知函數(shù),,若,對(duì)任意恒有,在區(qū)間上有且只有一個(gè)使,則的最大值為()A. B. C. D.11.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題12.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.14.在中,,,,則繞所在直線旋轉(zhuǎn)一周所形成的幾何體的表面積為______________.15.若的展開式中各項(xiàng)系數(shù)之和為32,則展開式中x的系數(shù)為_____16.函數(shù)在的零點(diǎn)個(gè)數(shù)為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.20.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點(diǎn)分別是的中點(diǎn).(1)求證:平面;(2)若,求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【題目詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【題目點(diǎn)撥】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問題解決問題的能力,是難題.2、B【解題分析】
根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【題目詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【題目點(diǎn)撥】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.3、D【解題分析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點(diǎn),解方程組即得解.【題目詳解】如圖所示,函數(shù)與的圖象,因?yàn)闀r(shí),恒成立,于是兩函數(shù)必須有相同的零點(diǎn),所以,解得.故選:D【題目點(diǎn)撥】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點(diǎn)問題,考查不等式的恒成立問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、A【解題分析】
利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【題目點(diǎn)撥】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.5、D【解題分析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算6、A【解題分析】
計(jì)算,得到答案.【題目詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.7、C【解題分析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.8、C【解題分析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【題目詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【題目點(diǎn)撥】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.9、A【解題分析】
因?yàn)椋院瘮?shù)是偶函數(shù),排除B、D,又,排除C,故選A.10、C【解題分析】
根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個(gè)最大值,求得的取值范圍,求得對(duì)應(yīng)的取值范圍,由為整數(shù)對(duì)的取值進(jìn)行驗(yàn)證,由此求得的最大值.【題目詳解】由題意知,則其中,.又在上有且只有一個(gè)最大值,所以,得,即,所以,又,因此.①當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;②當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;③當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)時(shí),成立;綜上所得的最大值為.故選:C【題目點(diǎn)撥】本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.11、D【解題分析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.12、A【解題分析】
可得集合,求出補(bǔ)集,再求出即可.【題目詳解】由,得,即,所以,所以.故選:A【題目點(diǎn)撥】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【題目詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【題目點(diǎn)撥】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級(jí)結(jié)論,此題可以簡化計(jì)算.14、【解題分析】
由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,根據(jù)圓錐側(cè)面積計(jì)算公式可得.【題目詳解】解:由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【題目點(diǎn)撥】本題考查旋轉(zhuǎn)體的表面積計(jì)算問題,屬于基礎(chǔ)題.15、2025【解題分析】
利用賦值法,結(jié)合展開式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的系數(shù).【題目詳解】依題意,令,解得,所以,則二項(xiàng)式的展開式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【題目點(diǎn)撥】本小題主要考查二項(xiàng)式展開式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.16、1【解題分析】
本問題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【題目詳解】問題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【題目點(diǎn)撥】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)5【解題分析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【題目詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【題目點(diǎn)撥】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.18、(1)證明見解析(2)【解題分析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【題目詳解】(1)因?yàn)?,故,所以四邊形為菱形,而平面,?因?yàn)椋?,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)椋?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)?,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【題目點(diǎn)撥】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.19、(1);(2).【解題分析】
(1)分類討論去絕對(duì)值號(hào),然后解不等式即可.(2)因?yàn)閷?duì)任意,都存在,使得不等式成立,等價(jià)于,根據(jù)絕對(duì)值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【題目詳解】解:(1)當(dāng)時(shí),,則當(dāng)時(shí),由得,,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),由得,,解得.所以的解集為(2)對(duì)任意,都存在,得成立,等價(jià)于.因?yàn)?,所以,且|,①當(dāng)時(shí),①式等號(hào)成立,即.又因?yàn)椋诋?dāng)時(shí),②式等號(hào)成立,即.所以,即即的取值范圍為:.【題目點(diǎn)撥】知識(shí):考查含兩個(gè)絕對(duì)值號(hào)的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運(yùn)算求解能力;中檔題.20、(1);(2).【解題分析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長,進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【題目詳解】(1)在中,,解得,.(2)在中,,..【題目點(diǎn)撥】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.21、(1)見解析;(2).【解題分析】
(1)取的中點(diǎn),連接,通過證明,即可證得;(2)建立空間直角坐標(biāo)系,利用向量的坐標(biāo)表示即可得解.【題目詳解】(1)證明:取的中點(diǎn),連接.是的中點(diǎn),,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標(biāo)系.設(shè)平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【題目點(diǎn)撥】此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準(zhǔn)確計(jì)算.22、(1)見解析;(2)證明見解析.【解題分析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【題目詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版實(shí)習(xí)生實(shí)習(xí)期間實(shí)習(xí)單位培訓(xùn)責(zé)任協(xié)議3篇
- 寫字樓電梯管理協(xié)議
- 2025個(gè)人貨車租賃合同書
- 建筑工程:車庫雨棚施工合同范本
- 家政服務(wù)伸縮縫安裝施工協(xié)議
- 2025版勞動(dòng)合同補(bǔ)充協(xié)議范本匯編3篇
- 2024年教育培訓(xùn)機(jī)構(gòu)廣告合作合同范本3篇
- 自建房屋建筑設(shè)備租賃合同
- 證券投資聯(lián)合體投標(biāo)協(xié)議模板
- 2025年度爬架租賃及拆除服務(wù)合同3篇
- 2024養(yǎng)老院消防設(shè)備升級(jí)與消防系統(tǒng)維護(hù)服務(wù)合同3篇
- 2024-2025學(xué)年寒假致學(xué)生家長的一封信(安全版)
- 人才引進(jìn)政策購房合同模板
- 浙江省杭州市2023-2024學(xué)年高一上學(xué)期1月期末英語試題 含解析
- 人教版(2024新版)英語七年級(jí)上冊(cè)期末復(fù)習(xí)綜合測(cè)試卷(含答案)
- 【中考真題】四川省廣安市2024年中考語文真題試卷(含答案)
- 學(xué)校教材教輔排查總結(jié)報(bào)告三篇
- 衛(wèi)生部手術(shù)分級(jí)目錄(2023年1月份修訂)
- 200MW光伏電站項(xiàng)目可行性研究報(bào)告模板
- 基于單片機(jī)的除氧器壓力控制系統(tǒng)設(shè)計(jì)
- 帶狀皰疹的病例書寫(干貨分享)
評(píng)論
0/150
提交評(píng)論