山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題_第1頁
山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題_第2頁
山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題_第3頁
山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題_第4頁
山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省泰安市寧陽縣四中2024屆高考模擬金典卷數(shù)學(xué)試題(二)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.2.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)3.已知,則,不可能滿足的關(guān)系是()A. B. C. D.4.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題5.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1006.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.7.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.8.已知復(fù)數(shù),則的虛部為()A. B. C. D.19.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.10.已知向量,,則與共線的單位向量為()A. B.C.或 D.或11.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標(biāo)分別為,則()A. B. C. D.12.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數(shù)單位),則復(fù)數(shù)________.14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.16.在矩形ABCD中,,,點E,F(xiàn)分別為BC,CD邊上動點,且滿足,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.18.(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度19.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點,證明:當(dāng)時,.21.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【題目詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【題目點撥】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.2、C【解題分析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【題目詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【題目點撥】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.3、C【解題分析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【題目詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【題目點撥】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題4、D【解題分析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【題目詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【題目點撥】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.5、B【解題分析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【題目詳解】由題意,.故選:B.【題目點撥】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.6、A【解題分析】

根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【題目詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【題目點撥】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.7、C【解題分析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實部大于零,虛部等于零,即可得到答案.【題目詳解】因為為正實數(shù),所以且,解得.故選:C【題目點撥】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.8、C【解題分析】

先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【題目詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【題目點撥】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、C【解題分析】

直線恒過定點,由此推導(dǎo)出,由此能求出點的坐標(biāo),從而能求出的值.【題目詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標(biāo)為,∴點B的坐標(biāo)為,把代入直線,解得,故選:C.【題目點撥】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.10、D【解題分析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【題目詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【題目點撥】本題考查向量的坐標(biāo)運算以及共線定理和單位向量的定義.11、A【解題分析】

畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【題目詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【題目點撥】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.12、B【解題分析】

三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補法可求其體積.【題目詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【題目點撥】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時注意三視圖中的點線關(guān)系與幾何體中的點、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

解:故答案為:【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題.14、【解題分析】

由于,則.15、【解題分析】

由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【題目詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【題目點撥】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.16、【解題分析】

利用平面直角坐標(biāo)系,設(shè)出點E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運算求得,再利用線性規(guī)劃的知識求出的最大值.【題目詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點時,取得最大值.故答案為:【題目點撥】本題考查了向量數(shù)量積的坐標(biāo)運算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解題分析】

(1)先對函數(shù)進(jìn)行求導(dǎo)得,對分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo)得,從而有,,,三個方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【題目詳解】解:(1)由,,則,當(dāng)時,則,故在上單調(diào)遞減;當(dāng)時,令,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設(shè),則,∴在上單調(diào)遞減;當(dāng)時,.∴,即所求的取值范圍為.【題目點撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想和數(shù)形結(jié)合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉(zhuǎn)化為單元問題,然后利用導(dǎo)數(shù)研究單變量函數(shù)的性質(zhì).18、【解題分析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分19、(1);(2)【解題分析】

(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【題目詳解】(1)①,當(dāng)時,,,當(dāng)時,②,①②得:,,適合,故;(2),.【題目點撥】本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎(chǔ)題.20、(Ⅰ);(Ⅱ)證明見解析【解題分析】

(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【題目詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點,設(shè)零點為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時,.【題目點撥】本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.21、(1)(2)【解題分析】

(1)由,可求,然后由時,可得,根據(jù)等比數(shù)列的通項可求(2)由,而,利用裂項相消法可求.【題目詳解】(1)當(dāng)時,,解得,當(dāng)時,①②②①得,即,數(shù)列是以2為首項,2為公比的等比數(shù)列,;(2)∴,∴,,.【題目點撥】本題考查遞推公式在數(shù)列的通項求解中的應(yīng)用,等比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論