2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題_第1頁
2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題_第2頁
2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題_第3頁
2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題_第4頁
2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆上海市桃浦中學高三模擬(最后一次)數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知,,,則()A. B. C. D.2.函數(shù)的圖象大致為()A. B.C. D.3.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.4.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.5.若集合,,則=()A. B. C. D.6.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-37.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件8.設為定義在上的奇函數(shù),當時,(為常數(shù)),則不等式的解集為()A. B. C. D.9.設,滿足約束條件,則的最大值是()A. B. C. D.10.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.211.已知函數(shù)fx=sinωx+π6+A.16,13 B.112.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.14.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.15.已知函數(shù)恰好有3個不同的零點,則實數(shù)的取值范圍為____16.函數(shù)的極大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.18.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務量,現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業(yè)務量不少于65單的概率;(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)20.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設數(shù)列滿足,,求數(shù)列的通項公式.21.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.22.(10分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大??;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【題目詳解】因為,,所以,故選:B.【題目點撥】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.2、A【解題分析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【題目詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【題目點撥】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.3、C【解題分析】

以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【題目詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【題目點撥】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.4、D【解題分析】

利用導數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【題目詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【題目點撥】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.5、C【解題分析】試題分析:化簡集合故選C.考點:集合的運算.6、B【解題分析】

根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【題目詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【題目點撥】本題主要考查導數(shù)的幾何意義,意在考查學生對這些知識的理解掌握水平.7、D【解題分析】

對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關系即可做出判斷.【題目詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【題目點撥】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.8、D【解題分析】

由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【題目詳解】因為在上是奇函數(shù).所以,解得,所以當時,,且時,單調(diào)遞增,所以在上單調(diào)遞增,因為,故有,解得.故選:D.【題目點撥】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學生對函數(shù)性質(zhì)的靈活運用能力,是一道中檔題.9、D【解題分析】

作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【題目詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【題目點撥】本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎題.10、D【解題分析】

如圖所示建立直角坐標系,設,則,計算得到答案.【題目詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【題目點撥】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.11、A【解題分析】

將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【題目詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【題目點撥】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.12、B【解題分析】

計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【題目詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【題目點撥】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設,設出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【題目詳解】設,直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【題目點撥】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.14、1【解題分析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【題目詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【題目點撥】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.15、【解題分析】

恰好有3個不同的零點恰有三個根,然后轉(zhuǎn)化成求函數(shù)值域即可.【題目詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【題目點撥】已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍是重點也是難點,這類題一般用分離參數(shù)的方法,中檔題.16、【解題分析】

對函數(shù)求導,根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【題目詳解】依題意,得.所以當時,;當時,.所以當時,函數(shù)有極大值.故答案為:.【題目點撥】本題考查利用導數(shù)研究函數(shù)的性質(zhì),考查運算求解能力以及化歸轉(zhuǎn)化思想,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)點的坐標為【解題分析】

將拋物線方程與圓方程聯(lián)立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關性質(zhì)即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標,再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數(shù)進行求導,判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【題目詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點的坐標為,因為四邊形為等腰梯形,所以,令,則,所以,因為,所以當時,;當時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當時,四邊形的面積取得最大值,因為,點的坐標為,所以當四邊形的面積取得最大值時,點的坐標為.【題目點撥】本題考查利用導數(shù)求函數(shù)的極值與最值、拋物線及其標準方程及直線與圓錐曲線相關的最值問題;考查運算求解能力、轉(zhuǎn)化與化歸能力和知識的綜合運用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關鍵;屬于綜合型強、難度大型試題.18、(1)an=2n【解題分析】

(1)先設出數(shù)列的公差為d,結(jié)合題中條件,求出首項和公差,即可得出結(jié)果.(2)利用裂項相消法求出數(shù)列的和.【題目詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題型.19、(1)0.4;(2);(3)應選擇方案,理由見解析【解題分析】

(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨立重復試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設騎手每日完成外賣業(yè)務量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計算兩種計算方式下的數(shù)學期望,并根據(jù)數(shù)學期望作出選擇.【題目詳解】(1)設事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務量不少于65單的頻率分別為,∵,∴估計為0.4.(2)設事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設騎手每日完成外賣業(yè)務量為件,方案的日工資,方案的日工資,所以隨機變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應選擇方案.【題目點撥】本題考查了頻率分布直方圖的簡單應用,獨立重復試驗概率的求法,數(shù)學期望的求法并由期望作出方案選擇,屬于中檔題.20、(1);(2).【解題分析】

(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【題目詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【題目點撥】本題考查等差數(shù)列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎題.21、(1)(2)最大值;最小值.【解題分析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論