版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏林芝二高三下學(xué)期2月期末統(tǒng)考數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則下列結(jié)論正確的是()A. B. C. D.2.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.3.已知等比數(shù)列滿足,,則()A. B. C. D.4.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.5.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.6.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.47.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.8.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)9.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,10.設(shè)不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標(biāo)滿足不等式的概率為A. B.C. D.11.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.312.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進(jìn)行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.15.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.16.(5分)在平面直角坐標(biāo)系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標(biāo);若不是,請說明理由.18.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.20.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.21.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.22.(10分)已知點到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點F的坐標(biāo);(Ⅱ)設(shè)點P關(guān)于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由題意,分析即得解【題目詳解】由題意,故,故選:D【題目點撥】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.2、D【解題分析】
先求出四個頂點、四個焦點的坐標(biāo),四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【題目詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標(biāo)為,四個焦點的坐標(biāo)為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【題目點撥】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.3、B【解題分析】由a1+a3+a5=21得a3+a5+a7=,選B.4、C【解題分析】令圓的半徑為1,則,故選C.5、B【解題分析】
由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【題目詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【題目點撥】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、C【解題分析】
計算,由共軛復(fù)數(shù)的概念解得即可.【題目詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【題目點撥】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.7、B【解題分析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【題目詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【題目點撥】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.8、C【解題分析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【題目詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【題目點撥】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.9、D【解題分析】
由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【題目詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選【題目點撥】本題主要考查的是的圖像的運(yùn)用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標(biāo)求出結(jié)果10、A【解題分析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【題目詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【題目點撥】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.11、A【解題分析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點撥】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.12、B【解題分析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計算即可.【題目詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【題目點撥】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【題目詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【題目點撥】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.14、【解題分析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【題目詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【題目點撥】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.15、【解題分析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【題目詳解】原問題等價于,當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【題目點撥】本題主要考查了對勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.16、【解題分析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)是,定點坐標(biāo)為或【解題分析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設(shè)直線的方程為,點、的坐標(biāo)分別為,,聯(lián)立方程得到,,計算點的坐標(biāo)為,點的坐標(biāo)為,圓的方程可化為,得到答案.【題目詳解】(1)根據(jù)題意:,因為,所以,所以橢圓的方程為.(2)設(shè)直線的方程為,點、的坐標(biāo)分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因為直線的斜率,所以直線的方程,所以點的坐標(biāo)為,同理,點的坐標(biāo)為,故以為直徑的圓的方程為,又因為,,所以圓的方程可化為,令,則有,所以定點坐標(biāo)為或.【題目點撥】本題考查了橢圓方程,圓過定點問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1);(2)證明見解析.【解題分析】
(1)由題意求得的坐標(biāo),代入橢圓方程求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,可得關(guān)于的一元二次方程,設(shè)出的坐標(biāo),分別求出直線與直線的方程,從而求得兩點的縱坐標(biāo),利用根與系數(shù)關(guān)系可化簡證得為定值.【題目詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設(shè)直線CD的方程為,代入,得:設(shè),,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【題目點撥】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查計算能力,是難題.19、(1)(2)【解題分析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【題目詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時,上式成立,當(dāng),有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時,,不符合;當(dāng)即時,,符合當(dāng)即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)的最小值為【題目點撥】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.20、(1)(2)【解題分析】
本題主要考查了等比數(shù)列的通項公式的求解,數(shù)列求和的錯位相減求和是數(shù)列求和中的重點與難點,要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點,考慮利用錯位相減可求數(shù)列的和解:(1)(2),兩式相減:21、(1)詳見解析;(2).【解題分析】
(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標(biāo)系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【題目詳解】解:(1)連結(jié)∵,且是的中點,∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點,∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國射頻功率放大器行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國企業(yè)管理培訓(xùn)行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國新型健康服務(wù)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 新形勢下高空作業(yè)平臺行業(yè)快速做大市場規(guī)模戰(zhàn)略制定與實施研究報告
- 比較文學(xué)情境母題研究
- 建設(shè)無煙學(xué)校宣傳資料
- 建設(shè)培訓(xùn)中心規(guī)章制度
- 初中地理會考知識點
- 2025年中國電信運(yùn)營商行業(yè)全景評估及投資規(guī)劃建議報告
- 云南省楚雄州2023-2024學(xué)年九年級上學(xué)期期末教育學(xué)業(yè)質(zhì)量監(jiān)測化學(xué)試卷
- 煤礦巷道噴涂技術(shù)方案
- 新版中國腦出血診治指南
- 高校搬遷可行性方案
- 充電樁選址優(yōu)化與布局規(guī)劃
- 科技產(chǎn)業(yè)園項目投資計劃書
- 苗木采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- JJF 1030-2023溫度校準(zhǔn)用恒溫槽技術(shù)性能測試規(guī)范
- 輸變電工程安全文明施工設(shè)施標(biāo)準(zhǔn)化配置表
- 一銷基氯苯生產(chǎn)車間硝化工段工藝初步設(shè)計
- 自動控制原理仿真實驗課程智慧樹知到課后章節(jié)答案2023年下山東大學(xué)
- 【城市軌道交通運(yùn)營安全管理研究9200字(論文)】
評論
0/150
提交評論