![2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWV4xSAThz3AAHWUZ-_7BA061.jpg)
![2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWV4xSAThz3AAHWUZ-_7BA0612.jpg)
![2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWV4xSAThz3AAHWUZ-_7BA0613.jpg)
![2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWV4xSAThz3AAHWUZ-_7BA0614.jpg)
![2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWV4xSAThz3AAHWUZ-_7BA0615.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年吉林省長春市德惠市第三中學數(shù)學九年級第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若點(﹣1.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b+c<1.其中正確的個數(shù)有()A.2 B.3 C.4 D.52.下列汽車標志中,可以看作是中心對稱圖形的是A. B. C. D.3.若,相似比為2,且的面積為12,則的面積為()A.3 B.6 C.24 D.484.若反比例函數(shù)的圖象經(jīng)過點(2,-3),則k值是()A.6 B.-6 C. D.5.將二次函數(shù)y=x2的圖象沿y軸向上平移2個單位長度,再沿x軸向左平移3個單位長度,所得圖象對應的函數(shù)表達式為()A.y=(x+3)2+2 B.y=(x﹣3)2+2 C.y=(x+2)2+3 D.y=(x﹣2)2+36.正方形ABCD內(nèi)接于⊙O,若⊙O的半徑是,則正方形的邊長是()A.1 B.2 C. D.27.如圖,拋物線與直線交于,兩點,與直線交于點,將拋物線沿著射線方向平移個單位.在整個平移過程中,點經(jīng)過的路程為()A. B. C. D.8.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形9.為了估計水塘中的魚數(shù),養(yǎng)魚者先從魚塘中捕獲30條魚,在每一條魚身上做好標記后把這些魚放歸魚塘,再從魚塘中打撈魚。通過多次實驗后發(fā)現(xiàn)捕撈的魚中有作記號的頻率穩(wěn)定在2.5%左右,則魚塘中魚的條數(shù)估計為()A.600條 B.1200條 C.2200條 D.3000條10.若反比例函數(shù)y=的圖象經(jīng)過點(2,-1),則該反比例函數(shù)的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限二、填空題(每小題3分,共24分)11.如圖,在中,,為邊上一點,已知,,,則____________.12.在△ABC中,tanB=,BC邊上的高AD=6,AC=3,則BC長為_____.13.如圖,邊長為2的正方形,以為直徑作,與相切于點,與交于點,則的面積為__________.14.如圖,是二次函數(shù)和一次函數(shù)的圖象,觀察圖象寫出時,x的取值范圍__________.15.兩塊大小相同,含有30°角的三角板如圖水平放置,將△CDE繞點C按逆時針方向旋轉(zhuǎn),當點E的對應點E′恰好落在AB上時,△CDE旋轉(zhuǎn)的角度是______度.16.點P是線段AB的黃金分割點(AP>BP),則=________.17.如圖,在平面直角坐標系中,△ABC和△A′B′C′是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2),若點A′(5,6),則A的坐標為______.18.如圖,在平面直角坐標系xOy中,已知點A(3,3)和點B(7,0),則tan∠ABO=_____.三、解答題(共66分)19.(10分)國家規(guī)定,中、小學生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.請根據(jù)上述信息解答下列問題:(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在組內(nèi),中位數(shù)落在組內(nèi);(2)該轄區(qū)約有18000名初中學生,請你估計其中達到國家規(guī)定體育活動時間的人數(shù).20.(6分)(問題情境)(1)古希臘著名數(shù)學家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項,每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項.射影定理是數(shù)學圖形計算的重要定理.其符號語言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)AC2=AB·AD;(2)BC2=AB·BD;(3)CD2=AD·BD;請你證明定理中的結(jié)論(1)AC2=AB·AD.(結(jié)論運用)(2)如圖2,正方形ABCD的邊長為3,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF,①求證:△BOF∽△BED;②若,求OF的長.21.(6分)如圖,以矩形ABCD的邊CD為直徑作⊙O,點E是AB的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H.(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;(2)求證:AH是⊙O的切線;(3)若AB=6,CH=2,則AH的長為.22.(8分)已知:拋物線y=2ax2﹣ax﹣3(a+1)與x軸交于點AB(點A在點B的左側(cè)).(1)不論a取何值,拋物線總經(jīng)過第三象限內(nèi)的一個定點C,請直接寫出點C的坐標;(2)如圖,當AC⊥BC時,求a的值和AB的長;(3)在(2)的條件下,若點P為拋物線在第四象限內(nèi)的一個動點,點P的橫坐標為h,過點P作PH⊥x軸于點H,交BC于點D,作PE∥AC交BC于點E,設△ADE的面積為S,請求出S與h的函數(shù)關(guān)系式,并求出S取得最大值時點P的坐標.23.(8分)求值:+2sin30°-tan60°-tan45°24.(8分)如圖,已知的三個頂點坐標為,,.(1)將繞坐標原點旋轉(zhuǎn),畫出旋轉(zhuǎn)后的,并寫出點的對應點的坐標;(2)將繞坐標原點逆時針旋轉(zhuǎn),直接寫出點的對應點Q的坐標;(3)請直接寫出:以、、為頂點的平行四邊形的第四個頂點的坐標.25.(10分)如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.(1)求證:PE是⊙O的切線;(2)求證:DE平分∠BEP;(3)若⊙O的半徑為10,CF=2EF,求BE的長.26.(10分)如圖是由兩個長方體組成的幾何體,這兩個長方體的底面都是正方形,畫出圖中幾何體的主視圖、左視圖和俯視圖.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】分析:根據(jù)二次函數(shù)的性質(zhì)一一判斷即可.【詳解】詳解:∵拋物線對稱軸x=-1,經(jīng)過(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①錯誤,∵拋物線對稱軸x=-1,經(jīng)過(1,1),可知拋物線與x軸還有另外一個交點(-3,1)∴拋物線與x軸有兩個交點,∴b2-4ac>1,故②正確,∵拋物線與x軸交于(-3,1),∴9a-3b+c=1,故③正確,∵點(-1.5,y1),(-2,y2)均在拋物線上,(-1.5,y1)關(guān)于對稱軸的對稱點為(-1.5,y1)(-1.5,y1),(-2,y2)均在拋物線上,且在對稱軸左側(cè),-1.5>-2,則y1<y2;故④錯誤,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正確,故選B.【點睛】本題考查二次函數(shù)與系數(shù)的關(guān)系,二次函數(shù)圖象上上的點的特征,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、A【詳解】考點:中心對稱圖形.分析:根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.解:A.旋轉(zhuǎn)180°,與原圖形能夠完全重合是中心對稱圖形;故此選項正確;B.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;故選A.3、A【解析】試題分析:∵△ABC∽△DEF,相似比為2,∴△ABC與△DEF的面積比為4,∵△ABC的面積為12,∴△DEF的面積為:12×=1.故選A.考點:相似三角形的性質(zhì).4、B【分析】直接把點代入反比例函數(shù)解析式即可得出k的值.【詳解】∵反比例函數(shù)的圖象經(jīng)過點,
∴,解得:.
故選:B.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.5、A【分析】直接利用二次函數(shù)的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】解:將二次函數(shù)y=x1的圖象沿y軸向上平移1個單位長度,得到:y=x1+1,再沿x軸向左平移3個單位長度得到:y=(x+3)1+1.故選:A.【點睛】解決本題的關(guān)鍵是得到平移函數(shù)解析式的一般規(guī)律:上下平移,直接在函數(shù)解析式的后面上加,下減平移的單位;左右平移,比例系數(shù)不變,在自變量后左加右減平移的單位.6、B【分析】作OE⊥AD于E,連接OD,在Rt△ODE中,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:作OE⊥AD于E,連接OD,則OD=.在Rt△ODE中,易得∠EDO為45,△ODE為等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B選項是正確的.【點睛】此題主要考查了正多邊形和圓,本題需仔細分析圖形,利用垂徑定理與勾股定理即可解決問題.7、B【分析】根據(jù)題意拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,可得平移后的頂點坐標.設向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a,令x=2,y=(a-)2+,由0≤a≤4,推出y的最大值和最小值,根據(jù)點D的縱坐標的變化情形,即可解決問題.【詳解】解:由題意,拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,∵拋物線=(x+1)2-1的頂點坐標為(-1,-1),設拋物線向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a令x=2,y=(3-a)2-1+a,∴y=(a-)2+,∵0≤a≤4∴y的最大值為8,最小值為,∵a=4時,y=2,∴8-2+2(2-)=故選:B【點睛】本題考查的是拋物線上的點在拋物線平移時經(jīng)過的路程問題,解決問題的關(guān)鍵是在平移過程中點D的移動規(guī)律.8、B【分析】如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊成比例,對應角相等,兩個條件必須同時具備.9、B【分析】由題意已知魚塘中有記號的魚所占的比例,用樣本中的魚除以魚塘中有記號的魚所占的比例,即可求得魚的總條數(shù).【詳解】解:30÷2.5%=1.故選:B.【點睛】本題考查統(tǒng)計中用樣本估計總體的思想,熟練掌握并利用樣本總量除以所求量占樣本的比例即可估計總量.10、D【解析】試題分析:反比例函數(shù)的圖象經(jīng)過點,求出K=-2,當K>0時反比例函數(shù)的圖象在第一、三象限,當K〈0時反比例函數(shù)的圖象在第二、四象限,因為-2〈0,D正確.故選D考點:反比例函數(shù)的圖象的性質(zhì).二、填空題(每小題3分,共24分)11、【分析】由題意直接根據(jù)特殊三角函數(shù)值,進行分析計算即可得出答案.【詳解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案為:.【點睛】本題考查銳角三角函數(shù),熟練掌握三角函數(shù)定義以及特殊三角函數(shù)值進行分析是解題的關(guān)鍵.12、5或1【分析】分兩種情況:AC與AB在AD同側(cè),AC與AB在AD的兩側(cè),在Rt△ABD中,通過解直角三角形求得BD,用勾股定理求得CD,再由線段和差求BC便可.【詳解】解:情況一:當AC與AB在AD同側(cè)時,如圖1,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD-CD=8-3=5;
情況二:當AC與AB在AD的兩側(cè),如圖2,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD+CD=8+3=1;
綜上,BC=5或1.
故答案為:5或1.【點睛】本題主要考查了解直角三角形的應用題,關(guān)鍵是分情況討論,比較基礎,容易出錯的地方是漏解.13、【分析】運用切線長定理和勾股定理求出DF,進而完成解答.【詳解】解:∵與相切于點,與交于點∴EF=AF,EC=BC=2設EF=AF=x,則CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,則DF=∴的面積為=故答案為.【點睛】本題考查了切線長定理和勾股定理等知識點,根據(jù)切線長定理得到相等的線段是解答本題的關(guān)鍵.14、.【解析】試題分析:∵y1與y2的兩交點橫坐標為-2,1,當y2≥y1時,y2的圖象應在y1的圖象上面,即兩圖象交點之間的部分,∴此時x的取值范圍是-2≤x≤1.考點:1、二次函數(shù)的圖象;2、一次函數(shù)的圖象.15、1【分析】根據(jù)旋轉(zhuǎn)性質(zhì)及直角三角形兩銳角互余,可得△E′CB是等邊三角形,從而得出∠ACE′的度數(shù),再根據(jù)∠ACE′+∠ACE′=90°得出△CDE旋轉(zhuǎn)的度數(shù).【詳解】解:根據(jù)題意和旋轉(zhuǎn)性質(zhì)可得:CE′=CE=BC,∵三角板是兩塊大小一樣且含有1°的角,∴∠B=60°∴△E′CB是等邊三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=1°,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),本題關(guān)鍵是得到△ABC等邊三角形.16、.【解析】解:∵點P是線段AB的黃金分割點(AP>BP),∴=.故答案為.點睛:本題考查了黃金分割的定義,牢記黃金分割比是解題的關(guān)鍵.17、(2.5,3)【分析】利用點B(3,1),B′(6,2)即可得出位似比進而得出A的坐標.【詳解】解:∵點B(3,1),B′(6,2),點A′(5,6),∴A的坐標為:(2.5,3).故答案為:(2.5,3).【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.18、.【分析】過A作AC⊥OB于點C,由點的坐標求得OC、AC、OB,進而求BC,在Rt△ABC中,由三角函數(shù)定義便可求得結(jié)果.【詳解】解:過A作AC⊥OB于點C,如圖,∵A(3,3),點B(7,0),∴AC=OC=3,OB=7,∴BC=OB﹣OC=4,∴tan∠ABO=,故答案為:.【點睛】本題主要考查了解直角三角形的應用,平面直角坐標系,關(guān)鍵是構(gòu)造直角三角形.三、解答題(共66分)19、(1)B,C;(2)1.【分析】(1)根據(jù)中位數(shù)的概念,中位數(shù)應是第150、151人時間的平均數(shù),分析可得答案;(2)首先計算樣本中達到國家規(guī)定體育活動時間的頻率,再進一步估計總體達到國家規(guī)定體育活動時間的人數(shù).【詳解】(1)眾數(shù)在B組.根據(jù)中位數(shù)的概念,中位數(shù)應是第150、151人時間的平均數(shù),分析可得其均在C組,故本次調(diào)查數(shù)據(jù)的中位數(shù)落在C組.故答案為B,C;(2)達國家規(guī)定體育活動時間的人數(shù)約1800×=1(人).答:達國家規(guī)定體育活動時間的人約有1人.考點:頻數(shù)(率)分布直方圖;用樣本估計總體;中位數(shù);眾數(shù).20、(1)見解析;(2)①見解析;②【分析】(1)證明△ACD∽△ABC,即可得證;
(2)①BC2=BO?BD,BC2=BF?BE,即BO?BD=BF?BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【詳解】解:(1)證明:如圖1,∵CD⊥AB,
∴∠BDC=90°,
而∠A=∠A,∠ACB=90°,
∴△ACD∽△ABC,
∴AC:AB=AD:AC,
∴AC2=AB·AD;
(2)①證明:如圖2,
∵四邊形ABCD為正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO?BD,
∵CF⊥BE,
∴BC2=BF?BE,
∴BO?BD=BF?BE,
即,而∠OBF=∠EBD,
∴△BOF∽△BED;
②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;
在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【點睛】本題為三角形相似綜合題,涉及到勾股定理運用、正方形基本知識等,難點在于找到相似三角形,此類題目通常難度較大.21、(1)詳見解析;(2)詳見解析;(3)【分析】(1)根據(jù)矩形的性質(zhì)得到AE∥OC,AE=OC即可證明;(2)根據(jù)平行四邊形的性質(zhì)得到∠AOD=∠OCF,∠AOF=∠OFC,再根據(jù)等腰三角形的性質(zhì)得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS證明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可證明;(3)根據(jù)切線長定理可得AD=AF,CH=FH=2,設AD=x,則AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的長.【詳解】(1)解:連接AO,四邊形AECO是平行四邊形.∵四邊形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中點,∴AE=AB.∵CD是⊙O的直徑,∴OC=CD.∴AE∥OC,AE=OC.∴四邊形AECO為平行四邊形.(2)證明:由(1)得,四邊形AECO為平行四邊形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四邊形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵點F在⊙O上,∴AH是⊙O的切線.(3)∵HC、FH為圓O的切線,AD、AF是圓O的切線∴AD=AF,CH=FH=2,設AD=x,則AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=∴AH=+2=.【點睛】此題主要考查直線與圓的關(guān)系,解題法的關(guān)鍵是熟知切線的判定定理與性質(zhì),及勾股定理的運用.22、(1)第三象限內(nèi)的一個定點C為(﹣1,﹣3);(2)a=,AB=;(3)S=﹣h2+h﹣,當h=時,S的最大值為,此時點P(,﹣).【分析】(1)對拋物線解析式進行變形,使a的系數(shù)為0,解出x的值,即可確定點C的坐標;(2)設函數(shù)對稱軸與x軸交點為M,根據(jù)拋物線的對稱軸可求出M的坐標,然后利用勾股定理求出CM的長度,再利用直角三角形的斜邊的中線等于斜邊的一半求出AB的長度,則A,B兩點的坐標可求,再將A,B兩點代入解析式中即可求出a的值;(3)過點E作EF⊥PH于點F,先用待定系數(shù)法求出直線BC的解析式,然后將P,D的坐標用含h的代數(shù)式表示出來,最后利用S=S△ABE﹣S△ABD=×AB×(yD﹣yE)求解【詳解】(1)y=2ax2﹣ax﹣3(a+1)=a(2x2﹣x﹣3)﹣3,令2x2﹣x﹣3=0,解得:x=或﹣1,故第三象限內(nèi)的一個定點C為(﹣1,﹣3);(2)函數(shù)的對稱軸為:x=,設函數(shù)對稱軸與x軸交點為M,則其坐標為:(,0),則由勾股定理得CM=,則AB=2CM=,∴則點A、B的坐標分別為:(﹣3,0)、(,0);將點A的坐標代入函數(shù)表達式得:18a+3a﹣3a﹣3=0,解得:a=,函數(shù)的表達式為:y=(x+3)(x﹣)=x2﹣x﹣;(3)過點E作EF⊥PH于點F,設:∠ABC=α,則∠ABC=∠HPE=∠DEF=α,設直線BC的解析式為將點B、C坐標代入一次函數(shù)表達式得解得:∴直線BC的表達式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小數(shù)除以整數(shù)同步作業(yè)題帶答案
- 三年級數(shù)學萬以內(nèi)加減混合兩步運算題質(zhì)量作業(yè)試題帶答案
- 起勞動合同兩年期限強制執(zhí)行細則
- 采購合同范本(第二部分)
- 2025年度共享教室出租合同范本:遠程教育資源共享協(xié)議
- 2025年度城市軌道交通車輛運輸合同范本
- 2025年度汽車金融借款合同范本
- 2025年度城市綠化提升貸款合同
- 2025年度城市綜合體建筑工程施工合同范本
- 2025年中石化標準文本:房地產(chǎn)建設工程施工合同
- 中國氫內(nèi)燃機行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2024版)
- 《自然保護區(qū)劃分》課件
- 2025年普通卷釘項目可行性研究報告
- 2024年湖南高速鐵路職業(yè)技術(shù)學院高職單招數(shù)學歷年參考題庫含答案解析
- 上海鐵路局招聘筆試沖刺題2025
- 2025年建筑施工春節(jié)節(jié)后復工復產(chǎn)工作專項方案
- 學校食堂餐廳管理者食堂安全考試題附答案
- 《商用車預見性巡航系統(tǒng)技術(shù)規(guī)范》
- 國旗班指揮刀訓練動作要領
- 春季安全開學第一課
- 植物芳香油的提取 植物有效成分的提取教學課件
評論
0/150
提交評論