2023年六安市重點中學數(shù)學九上期末檢測試題含解析_第1頁
2023年六安市重點中學數(shù)學九上期末檢測試題含解析_第2頁
2023年六安市重點中學數(shù)學九上期末檢測試題含解析_第3頁
2023年六安市重點中學數(shù)學九上期末檢測試題含解析_第4頁
2023年六安市重點中學數(shù)學九上期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年六安市重點中學數(shù)學九上期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)2.如圖,反比例函數(shù)第一象限內(nèi)的圖象經(jīng)過的頂點,,,且軸,點,,的橫坐標分別為1,3,若,則的值為()A.1 B. C. D.23.在中,,垂足為D,則下列比值中不等于的是()A. B. C. D.4.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:35.用一圓心角為120°,半徑為6cm的扇形做成一個圓錐的側(cè)面,這個圓錐的底面的半徑是()A.1cm B.2cm C.3cm D.4cm6.根據(jù)圓規(guī)作圖的痕跡,可用直尺成功找到三角形外心的是()A. B.C. D.7.關(guān)于x的一元二次方程x2﹣x+sinα=0有兩個相等的實數(shù)根,則銳角α等于()A.15° B.30° C.45° D.60°8.如圖是一斜坡的橫截面,某人沿斜坡上的點出發(fā),走了13米到達處,此時他在鉛直方向升高了5米.則該斜坡的坡度為()A. B. C. D.9.口袋中有14個紅球和若干個白球,這些球除顏色外都相同,從口袋中隨機摸出一個球,記下顏色后放回,多次實驗后發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.3,則白球的個數(shù)是()A.5 B.6 C.7 D.810.在同一平面直角坐標系中,若拋物線與關(guān)于y軸對稱,則符合條件的m,n的值為()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-211.已知⊙O的半徑為5cm,圓心O到直線l的距離為5cm,則直線l與⊙O的位置關(guān)系為()A.相交 B.相切 C.相離 D.無法確定12.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一路燈B距地面高BA=7m,身高1.4m的小紅從路燈下的點D出發(fā),沿A→H的方向行走至點G,若AD=6m,DG=4m,則小紅在點G處的影長相對于點D處的影長變長了_____m.14.如圖,⊙O是△ABC的外接圓,D是AC的中點,連結(jié)AD,BD,其中BD與AC交于點E.寫出圖中所有與△ADE相似的三角形:___________.15.如圖,A、B、C為⊙O上三點,且∠ACB=35°,則∠OAB的度數(shù)是______度.16.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.17.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.18.已知菱形中,,,邊上有點點兩動點,始終保持,連接取中點并連接則的最小值是_______.三、解答題(共78分)19.(8分)小華為了測量樓房的高度,他從樓底的處沿著斜坡向上行走,到達坡頂處.已知斜坡的坡角為,小華的身高是,他站在坡頂看樓頂處的仰角為,求樓房的高度.(計算結(jié)果精確到)(參考數(shù)據(jù):,,)20.(8分)平面直角坐標系中,函數(shù)(x>0),y=x-1,y=x-4的圖象如圖所示,p(a,b)是直線上一動點,且在第一象限.過P作PM∥x軸交直線于M,過P作PN∥y軸交曲線于N.(1)當PM=PN時,求P點坐標(2)當PM>PN時,直接寫出a的取值范圍.21.(8分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.22.(10分)解方程:(1)解方程:;(2).23.(10分)如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用15m),現(xiàn)在已備足可以砌50m長的墻的材料,試設計一種砌法,使矩形花園的面積為300m1.24.(10分)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;(2)若點C是弧AB的中點,已知AB=4,求CE?CP的值.25.(12分)如圖,在平行四邊形ABCD中,AE⊥BC于點E.若一個三角形模板與△ABE完全重合地疊放在一起,現(xiàn)將該模板繞點E順時針旋轉(zhuǎn).要使該模板旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上,請?zhí)骄科叫兴倪呅蜛BCD的角和邊需要滿足的條件.26.(1)計算:sin230°+cos245°(2)解方程:x(x+1)=3

參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、當點E的坐標為(6,0)時,∠CDE=90°,CD=1,DE=1,則AB:BC=CD:DE,△CDE∽△ABC,故本選項不符合題意;B、當點E的坐標為(6,3)時,∠CDE=90°,CD=1,DE=1,則AB:BC≠CD:DE,△CDE與△ABC不相似,故本選項符合題意;C、當點E的坐標為(6,5)時,∠CDE=90°,CD=1,DE=4,則AB:BC=DE:CD,△EDC∽△ABC,故本選項不符合題意;D、當點E的坐標為(4,1)時,∠ECD=90°,CD=1,CE=1,則AB:BC=CD:CE,△DCE∽△ABC,故本選項不符合題意.故選B.2、C【分析】先表示出CD,AD的長,然后在Rt△ACD中利用∠ACD的正切列方程求解即可.【詳解】過點作,∵點、點的橫坐標分別為1,3,且,均在反比例函數(shù)第一象限內(nèi)的圖象上,∴,,∴CD=2,AD=k-,∵,,,∴,,∵tan∠ACD=,∴,即,∴.故選:C.【點睛】本題考查了等腰三角形的性質(zhì),解直角三角形,以及反比例函數(shù)圖像上點的坐標特征,熟練掌握各知識點是解答本題的關(guān)鍵.3、D【分析】利用銳角三角函數(shù)定義判斷即可.【詳解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故選:D.【點睛】此題考查了銳角三角函數(shù)的定義,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵.4、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關(guān)鍵.5、B【解析】∵扇形的圓心角為120°,半徑為6cm,∴根據(jù)扇形的弧長公式,側(cè)面展開后所得扇形的弧長為∵圓錐的底面周長等于它的側(cè)面展開圖的弧長,∴根據(jù)圓的周長公式,得,解得r=2cm.故選B.考點:圓錐和扇形的計算.6、C【分析】根據(jù)三角形外心的定義得到三角形外心為三邊的垂直平分線的交點,然后利用基本作圖對各選項進行判斷.【詳解】三角形外心為三邊的垂直平分線的交點,由基本作圖得到C選項作了兩邊的垂直平分線,從而可用直尺成功找到三角形外心.故選C.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了三角形的外心.7、B【解析】解:∵關(guān)于x的一元二次方程有兩個相等的實數(shù)根,∴△=,解得:sinα=,∵α為銳角,∴α=30°.故選B.8、A【分析】如圖,過點M做水平線,過點N做直線垂直于水平線垂足為點A,則△MAN為直角三角形,先根據(jù)勾股定理,求出水平距離,然后根據(jù)坡度定義解答即可.【詳解】解:如圖,過點M做水平線,過點N做垂直于水平線交于點A.在Rt△MNA中,,∴坡度5:12=1:2.1.故選:A【點睛】本題考查的知識點為:坡度=垂直距離:水平距離,通常寫成1:n的形式,屬于基礎題.9、B【分析】設白球的個數(shù)為x,利用概率公式即可求得.【詳解】設白球的個數(shù)為x,由題意得,從14個紅球和x個白球中,隨機摸出一個球是白球的概率為0.3,則利用概率公式得:,解得:,經(jīng)檢驗,x=6是原方程的根,故選:B.【點睛】本題考查了等可能下概率的計算,理解題意利用概率公式列出等式是解題關(guān)鍵.10、D【解析】由兩拋物線關(guān)于y軸對稱,可知兩拋物線的對稱軸也關(guān)于y軸對稱,與y軸交于同一點,由此可得二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),由此可得關(guān)于m、n的方程組,解方程組即可得.【詳解】關(guān)于y軸對稱,二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),∴,解之得,故選D.【點睛】本題考查了關(guān)于y軸對稱的拋物線的解析式間的關(guān)系,弄清系數(shù)間的關(guān)系是解題的關(guān)鍵.11、B【分析】根據(jù)圓心到直線的距離5等于圓的半徑5,即可判斷直線和圓相切.【詳解】∵圓心到直線的距離5cm=5cm,∴直線和圓相切,故選B.【點睛】本題考查了直線與圓的關(guān)系,解題的關(guān)鍵是能熟練根據(jù)數(shù)量之間的關(guān)系判斷直線和圓的位置關(guān)系.若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.12、C【分析】根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關(guān)鍵在于確定a、b的大小二、填空題(每題4分,共24分)13、1.【分析】根據(jù)由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,即、,據(jù)此求得DE、HG的值,從而得出答案.【詳解】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴、,即、,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影長變長1m.故答案為:1.【點睛】本題考查了相似三角形的應用:利用影長測量物體的高度,通常利用相似三角形的性質(zhì)即相似三角形的對應邊的比相等和“在同一時刻物高與影長的比相等”的原理解決.14、,【分析】根據(jù)兩角對應相等的兩個三角形相似即可判斷.【詳解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案為△CBE,△BDA.【點睛】本題考查相似三角形的判定,圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.15、1【分析】根據(jù)題意易得∠AOB=70°,然后由等腰三角形的性質(zhì)及三角形內(nèi)角和可求解.【詳解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴;故答案為1.【點睛】本題主要考查圓周角定理,熟練掌握圓周角定理是解題的關(guān)鍵.16、【解析】∵等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.17、.【分析】過點F作FH⊥AB于點H,證四邊形AGFH是正方形,設AG=x,表示出CG,再證△CFG∽△CBA,根據(jù)相似比求出x即可.【詳解】如圖過點F作FH⊥AB于點H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點睛】本題是對幾何知識的綜合考查,熟練掌握三角函數(shù)及相似知識是解決本題的關(guān)鍵.18、1【分析】過D點作DH⊥BC交BC延長線與H點,延長EF交DH與點M,連接BM.由菱形性質(zhì)和可證明,進而可得,由BM最小值為BH即可求解.【詳解】解:過D點作DH⊥BC交BC延長線與H點,延長EF交DH與點M,連接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴當BM最小時FG最小,根據(jù)點到直線的距離垂線段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值為6,∴的最小值是1.故答案為:1.【點睛】本題考查了動點線段的最小值問題,涉及了菱形的性質(zhì)、等腰三角形性質(zhì)和判定、垂線段最短、中位線定理等知識點;將“兩動點”線段長通過中位線轉(zhuǎn)化為“一定一動”線段長求解是解題關(guān)鍵.三、解答題(共78分)19、.【分析】作DH⊥AB于H,根據(jù)余弦的定義求出BC,根據(jù)正弦的定義求出CD,結(jié)合題意計算即可.【詳解】作DH⊥AB于H,

∵∠DBC=15°,BD=20,∴,,由題意得,四邊形ECBF和四邊形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:樓房AB的高度約為26m.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題和坡度坡角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.20、(1)(2,1)或(,);(2)【分析】(1)根據(jù)直線與直線的特征,可以判斷為平行四邊形,且,再根據(jù)坐標特征得到等式=3,即可求解;(2)根據(jù)第(1)小題的結(jié)果結(jié)合圖象即可得到答案.【詳解】(1)∵直線與軸交點,直線與軸交點,∴,∵直線與直線平行,且∥軸,∴為平行四邊形,∴,∵∥軸,在的圖象上,∴,∵在直線上,∴,∵,∴=3,解得:或,(2)如圖,∵或,,當點在直線和區(qū)間運動時,,∴【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用函數(shù)圖象性質(zhì)解決問題是本題的關(guān)鍵.21、(1)見解析(2)見解析【分析】(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形22、(1)無解;(2)【分析】(1)直接利用公式法解一元二次方程,即可得到答案;(2)先移項,然后利用因式分解法解一元二次方程,即可得到答案.【詳解】解:(1),∵,,,∴;∴原方程無解;(2),∴,∴,∴或,∴.【點睛】本題考查了解一元二次方程,解題的關(guān)鍵是熟練掌握公式法和因式分解法解一元二次方程.23、可以圍成AB的長為15米,BC為10米的矩形【解析】解:設AB=xm,則BC=(50﹣1x)m.根據(jù)題意可得,x(50﹣1x)=300,解得:x1=10,x1=15,當x=10,BC=50﹣10﹣10=30>15,故x1=10(不合題意舍去).答:可以圍成AB的長為15米,BC為10米的矩形.根據(jù)可以砌50m長的墻的材料,即總長度是50m,AB=xm,則BC=(50﹣1x)m,再根據(jù)矩形的面積公式列方程,解一元二次方程即可.24、(1)PD是⊙O的切線.證明見解析.(2)1.【解析】試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進而可得∠OPD=90°,從而證明PD是⊙O的切線;(2)連結(jié)BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進而可得,然后可得CE?CP的值.試題解析:(1)如圖,PD是⊙O的切線.證明如下:連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.(2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=()2=1.考點:相似三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;直線與圓的位置關(guān)系;探究型.25、詳見解析.【分析】三角形模板繞點E旋轉(zhuǎn)60°后,E為旋轉(zhuǎn)中心,位置不變,仍在邊BC上,過點E分別做射線EM,EN,EM,EN分別AB,CD于F,G使得∠BEM=∠AEN=60°,可證△BEF為等邊三角形,即EB=EF,故B的對應點為F.根據(jù)SAS可證,即EA=GE,故A的對應點為G.由此可得:要使該模板旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上,平行四邊形ABCD的角和邊需要滿足的條件是:∠ABC=60°,AB=BC.【詳解】解:要使該模板旋轉(zhuǎn)60°后,三個頂點仍在的邊上,的角和邊需要滿足的條件是:∠ABC=60°,AB=BC理由如下:三角形模板繞點E旋轉(zhuǎn)60°后,E為旋轉(zhuǎn)中心,位置不變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論