福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省福州市長樂區(qū)長樂高級中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)全集,集合,則=()A. B. C. D.2.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.3.已知為拋物線的準(zhǔn)線,拋物線上的點到的距離為,點的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.4.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④5.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.7.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.8.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.989.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.11.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.12.函數(shù)在的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.14.定義,已知,,若恰好有3個零點,則實數(shù)的取值范圍是________.15.在中,角所對的邊分別為,,的平分線交于點D,且,則的最小值為________.16.已知數(shù)列是等比數(shù)列,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時,求的零點;(2)當(dāng)時,證明:.18.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數(shù)的值域.19.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.20.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.21.(12分)已知,(其中).(1)求;(2)求證:當(dāng)時,.22.(10分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當(dāng)直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.2、D【解析】

根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.3、B【解析】

設(shè)拋物線焦點為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準(zhǔn)線,過作交于點,連接由拋物線定義,

,

當(dāng)且僅當(dāng)三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.4、A【解析】

對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.5、C【解析】

由余弦函數(shù)的單調(diào)性找出的等價條件為,再利用大角對大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.6、C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.【點睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.7、B【解析】

由焦點得拋物線方程,設(shè)點的坐標(biāo)為,根據(jù)對稱可求出點的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標(biāo)為,點的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.8、C【解析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎(chǔ)題.9、C【解析】

討論當(dāng)時,是否恒成立;討論當(dāng)恒成立時,是否成立,即可選出正確答案.【詳解】解:當(dāng)時,,由開口向上,則恒成立;當(dāng)恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.10、B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.11、D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.12、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當(dāng)時,,所以排除A選項;當(dāng)時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時,,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當(dāng)且僅當(dāng)時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14、【解析】

根據(jù)題意,分類討論求解,當(dāng)時,根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)無零點,不合題意;當(dāng)時,令,得,令,得或,再分當(dāng),兩種情況討論求解.【詳解】由題意得:當(dāng)時,在軸上方,且為增函數(shù),無零點,至多有兩個零點,不合題意;當(dāng)時,令,得,令,得或,如圖所示:當(dāng)時,即時,要有3個零點,則,解得;當(dāng)時,即時,要有3個零點,則,令,,所以在是減函數(shù),又,要使,則須,所以.綜上:實數(shù)的取值范圍是.故答案為:【點睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點問題,還考查了分類討論的思想和運算求解的能力,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬于中檔題.15、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡得,因此當(dāng)且僅當(dāng)時取等號,則的最小值為.點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.16、【解析】

根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】

當(dāng)時,求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計算即為導(dǎo)函數(shù)的零點;

當(dāng)時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當(dāng)時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當(dāng)時,,①若,則,所以成立,②若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.18、(1);(2)【解析】

(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識.19、(1);(2)證明見解析【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.20、(1)見解析(2)【解析】

(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設(shè),則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標(biāo)系.在等腰梯形中,可得.則.那么設(shè)平面的法向量為,則有,即,取,得.設(shè)與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)(2)見解析【解析】

(1)取,則;取,則,∴;(2)要證,只需證,當(dāng)時,;假設(shè)當(dāng)時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當(dāng)時,成立.綜上原不等式獲證.22、(1)(2)0【解析】

(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長公式,求解.(2)設(shè),根據(jù)直線的斜率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論