版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年蘇州市昆山市數(shù)學(xué)九年級第一學(xué)期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.正方形ABCD內(nèi)接于⊙O,若⊙O的半徑是,則正方形的邊長是()A.1 B.2 C. D.22.在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<13.二次函數(shù)y=3(x-2)2-1的圖像頂點坐標是()A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)4.某農(nóng)機廠四月份生產(chǎn)零件50萬個,第二季度共生產(chǎn)零件182萬個.設(shè)該廠第二季度平均每月的增長率為,那么滿足的方程是()A. B.C. D.5.如圖是用圍棋棋子在6×6的正方形網(wǎng)格中擺出的圖案,棋子的位置用有序數(shù)對表示,如A點為(5,1),若再擺一黑一白兩枚棋子,使這9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則下列擺放正確的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)6.如圖,已知梯形ABCO的底邊AO在軸上,BC∥AO,AB⊥AO,過點C的雙曲線交OB于D,且OD:DB=1:2,若△OBC的面積等于3,則k的值()A.等于2 B.等于 C.等于 D.無法確定7.如圖,半徑為3的經(jīng)過原點和點,是軸左側(cè)優(yōu)弧上一點,則為()A. B. C. D.8.若一個圓錐的底面積為,圓錐的高為,則該圓錐的側(cè)面展開圖中圓心角的度數(shù)為()A. B. C. D.9.下列說法中,不正確的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等邊三角形都相似 D.有一個角是100°的兩個等腰三角形相似10.如圖,,垂足為點,,,則的度數(shù)為()A. B. C. D.11.設(shè)A(x1,y1)、B(x2,y2)是反比例函數(shù)圖象上的兩點.若x1<x2<0,則y1與y2之間的關(guān)系是(
)A.y1<y2<0
B.y2<y1<0
C.y2>y1>0
D.y1>y2>012.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(2,4),將△AOB繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)點C恰好落在反比例函數(shù)y=的圖象上,則k的值為_____.14.二次函數(shù)的頂點坐標是___________.15.已知兩個相似三角形與的相似比為1.則與的面積之比為________.16.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個結(jié)論:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正確的結(jié)論的有_______.17.比較大?。篲____1.(填“>”、“=”或“<”)18.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.三、解答題(共78分)19.(8分)在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:小聰和小明通過例題的學(xué)習(xí),體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試利用圖象法探究方程的近似解,做法如下:請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).20.(8分)如圖,中,,,為內(nèi)部一點,且.(1)求證:;(2)求證:;(3)若點到三角形的邊,,的距離分別為,,,求證.21.(8分)如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點C,連接AC、OD交于點E.(1)求證:OD∥BC;(2)若AC=2BC,求證:DA與⊙O相切.22.(10分)如圖,⊙O是△ABC的外接圓,PA是⊙O切線,PC交⊙O于點D.(1)求證:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半徑.23.(10分)如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C(1)請判斷:FG與CE的數(shù)量關(guān)系是__________,位置關(guān)系是__________;(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.24.(10分)如圖,在四邊形中,,與交于點,點是的中點,延長到點,使,連接,(1)求證:四邊形是平行四邊形;(2)若,,,求四邊形的面積.25.(12分)已知拋物線y=x2+mx﹣10與x軸的一個交點是(﹣,0),求m的值及另一個交點坐標.26.已知關(guān)于的一元二次方程(為實數(shù)且).(1)求證:此方程總有兩個實數(shù)根;(2)如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】作OE⊥AD于E,連接OD,在Rt△ODE中,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:作OE⊥AD于E,連接OD,則OD=.在Rt△ODE中,易得∠EDO為45,△ODE為等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B選項是正確的.【點睛】此題主要考查了正多邊形和圓,本題需仔細分析圖形,利用垂徑定理與勾股定理即可解決問題.2、A【分析】根據(jù)反比例函數(shù)的性質(zhì),當反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質(zhì):①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內(nèi),y隨x的增大而減小;當k<0時,在同一個象限,y隨x的增大而增大.3、D【分析】由二次函數(shù)的頂點式,即可得出頂點坐標.【詳解】解:∵二次函數(shù)為y=a(x-h)2+k頂點坐標是(h,k),
∴二次函數(shù)y=3(x-2)2-1的圖象的頂點坐標是(2,-1).
故選:D.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)為y=a(x-h)2+k頂點坐標是(h,k).4、B【分析】由題意根據(jù)增長后的量=增長前的量×(1+增長率),如果該廠五、六月份平均每月的增長率為x,那么可以用x分別表示五、六月份的產(chǎn)量,進而即可得出方程.【詳解】解:設(shè)該廠五、六月份平均每月的增長率為x,那么得五、六月份的產(chǎn)量分別為50(1+x)、50(1+x)2,根據(jù)題意得50+50(1+x)+50(1+x)2=1.故選:B.【點睛】本題考查由實際問題抽象出一元二次方程的增長率問題,注意掌握其一般形式為a(1+x)2=b,a為起始時間的有關(guān)數(shù)量,b為終止時間的有關(guān)數(shù)量,x為增長率.5、D【分析】利用軸對稱圖形以及中心對稱圖形的性質(zhì)即可解答.【詳解】如圖所示:黑(3,1),白(3,3).故選D.【點睛】此題主要考查了旋轉(zhuǎn)變換以及軸對稱變換,正確把握圖形的性質(zhì)是解題關(guān)鍵.6、B【解析】如圖分別過D作DE⊥Y軸于E,過C作CF⊥Y軸于F,則△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面積比=OD:DB=1:9即又∴∴解得K=故選B7、B【分析】連接CA與x軸交于點D,根據(jù)勾股定理求出OD的長,求出,再根據(jù)圓心角定理得,即可求出的值.【詳解】設(shè)與x軸的另一個交點為D,連接CD∵∴CD是的直徑∴在中,,根據(jù)勾股定理可得∴根據(jù)圓心角定理得∴故答案為:B.【點睛】本題考查了三角函數(shù)的問題,掌握圓周角定理、勾股定理、銳角三角函數(shù)的定義是解題的關(guān)鍵.8、C【分析】根據(jù)圓錐底面積求得圓錐的底面半徑,然后利用勾股定理求得母線長,根據(jù)圓錐的母線長等于展開圖扇形的半徑,求出圓錐底面圓的周長,也即是展開圖扇形的弧長,然后根據(jù)弧長公式可求出圓心角的度數(shù).【詳解】解:∵圓錐的底面積為4πcm2,
∴圓錐的底面半徑為2cm,
∴底面周長為4π,
圓錐的高為4cm,
∴由勾股定理得圓錐的母線長為6cm,
設(shè)側(cè)面展開圖的圓心角是n°,
根據(jù)題意得:=4π,
解得:n=1.
故選:C.【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.9、A【分析】根據(jù)相似多邊形的定義,即可得到答案.【詳解】解:A、所有的菱形都相似,錯誤;B、所有的正方形都相似,正確;C、所有的等邊三角形都相似,正確;D、有一個角是100°的兩個等腰三角形相似,正確;故選:A.【點睛】本題考查了相似多邊形的定義,熟練掌握相似多邊形的性質(zhì):對應(yīng)角相等,對應(yīng)邊成比例是解題的關(guān)鍵.10、B【解析】由平行線的性質(zhì)可得,繼而根據(jù)垂直的定義即可求得答案.【詳解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故選B.【點睛】本題考查了垂線的定義,平行線的性質(zhì),熟練掌握相關(guān)知識是解題的關(guān)鍵.11、B【解析】先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x1<0即可得出結(jié)論.【詳解】∵反比例函數(shù)中,k=1>0,∴函數(shù)圖象的兩個分支位于一、三象限,且在每一象限內(nèi)y隨x的增大而減小,∵x1<x1<0,
∴0>y1>y1.故選:B【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.12、C【解析】根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應(yīng)邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【解析】根據(jù)題意和旋轉(zhuǎn)的性質(zhì),可以得到點C的坐標,把點C坐標代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點A的坐標為(2,4),∴OB=2,AB=4∵將△AOB繞點A逆時針旋轉(zhuǎn)90°,∴AD=4,CD=2,且AD//x軸∴點C的坐標為(6,2),∵點O的對應(yīng)點C恰好落在反比例函數(shù)y=的圖象上,
∴k=2,故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化-旋轉(zhuǎn),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.14、【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標是(h,k),直接求二次函數(shù)的頂點坐標即可.【詳解】∵是頂點式,∴頂點坐標是.故答案為:【點睛】本題考查了二次函數(shù)的性質(zhì),熟練掌握頂點式是解題的關(guān)鍵.15、2【分析】根據(jù)相似三角形的面積比等于相似比的平方,即可求得答案.【詳解】解:∵兩個相似三角形的相似比為1,
∴這兩個三角形的面積之比為2.
故答案為:2.【點睛】此題考查了相似三角形的性質(zhì).注意熟記定理是解此題的關(guān)鍵.16、①④⑤⑥【分析】①由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸位置確定b的符號,可對①作判斷;②令x=-1,則y=a-b+c,根據(jù)圖像可得:a-b+c<1,進而可對②作判斷;③根據(jù)對稱性可得:當x=2時,y>1,可對③對作判斷;④根據(jù)2a+b=1和c>1可對④作判斷;⑤根據(jù)圖像與x軸有兩個交點可對⑤作判斷;⑥根據(jù)對稱軸為:x=1可得:a=-b,進而可對⑥判作斷.【詳解】解:①∵該拋物線開口方向向下,∴a<1.∵拋物線對稱軸在y軸右側(cè),∴a、b異號,∴b>1;∵拋物線與y軸交于正半軸,∴c>1,∴abc<1;故①正確;②∵令x=-1,則y=a-b+c<1,∴a+c<b,故②錯誤;③根據(jù)拋物線的對稱性知,當x=2時,y>1,即4a+2b+c>1;故③錯誤;④∵對稱軸方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正確;⑤∵拋物線與x軸有兩個交點,∴ax2+bx+c=1由兩個不相等的實數(shù)根,∴>1,故⑤正確.⑥由④可知:2a+b=1,故⑥正確.綜上所述,其中正確的結(jié)論的有:①④⑤⑥.故答案為:①④⑤⑥.【點睛】主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,二次函數(shù)最值的熟練運用.17、>.【解析】先求出1=,再比較即可.【詳解】∵12=9<10,∴>1,故答案為>.【點睛】本題考查了實數(shù)的大小比較和算術(shù)平方根的應(yīng)用,用了把根號外的因式移入根號內(nèi)的方法.18、【詳解】試題分析:如圖,過點A作AH⊥BC于點H,∵AB=AC,∴AH平分∠BAC,且BH=BC=4.又∵∠BPC=∠BAC,∴∠BAH=∠BPC.∴tan∠BPC=tan∠BAH.在Rt△ABH中,AB=5,BH=4,∴AH=1.∴tan∠BAH=.∴tan∠BPC=.考點:1.等腰三角形的性質(zhì);2.銳角三角函數(shù)定義;1.轉(zhuǎn)化思想的應(yīng)用.三、解答題(共78分)19、(1)詳見解析,,,.(2)詳見解析,,,.【分析】分別按照小聰和小明的作法列表,描點,連線畫出圖象然后找近似值即可.【詳解】解法:選擇小聰?shù)淖鞣?,列表并作出函?shù)的圖象:…-1012………根據(jù)函數(shù)圖象,得近似解為,,.解法2:選擇小明的作法,列表并作出函數(shù)和的圖象:…-10123…………-2-112………根據(jù)函數(shù)圖象,得近似解為,,.【點睛】本題主要考查根據(jù)函數(shù)圖象求方程的近似解,能夠畫出函數(shù)圖象是解題的關(guān)鍵.20、(1)見解析;(2)見解析;(3)見解析.【分析】(1)根據(jù),利用兩角分別相等的兩個三角形相似即可證得結(jié)果;(2)利用相似三角形對應(yīng)邊成比例結(jié)合等腰直角三角形的性質(zhì)可得,,,從而求得結(jié)果;(3)根據(jù)兩角分別相等的兩個三角形相似,可證得,求得,由可得,從而證得結(jié)論.【詳解】(1)∵,,∴又,∴∴又∵,∴(2)∵∴在中,,∴∴,∴(3)如圖,過點作,,交、于點,,∴,,,∵∴,∴,又∵∴,∴,∴,即,∴∵,∴.∴∴.即:.【點睛】本題主要考查了等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),綜合性較強,有一定的難度.21、(1)證明見解析;(2)證明見解析.【分析】(1)利用SSS可證明△OAD≌△OCD,可得∠ADO=∠CDO,根據(jù)等腰三角形“三線合一”的性質(zhì)可得DE⊥AC,由AB是直徑可得∠ACB=90°,即可證明OD//BC;(2)設(shè)BC=a,則AC=2a,利用勾股定理可得AD=AB=,根據(jù)中位線的性質(zhì)可用a表示出OE、AE的長,即可表示出OD的長,根據(jù)勾股定理逆定理可得∠OAD=90°,即可證明DA與⊙O相切.【詳解】(1)連接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB為⊙O的直徑,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)設(shè)BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE為△ABC的中位線,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直徑,∴DA與⊙O相切.【點睛】本題考查圓周角定理、切線的判定、三角形中位線的性質(zhì)勾股定理,三角形的中位線平行于第三邊,且等于第三邊的一半;直徑所對的圓周角是直角;經(jīng)過半徑的外端點,且垂直于這條半徑的直線是圓的切線;熟練掌握相關(guān)性質(zhì)及定理是解題關(guān)鍵.22、(1)見解析;(2)⊙O的半徑為1【分析】(1)連接AO延長AO交⊙O于點E,連接EC.想辦法證明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解決問題;
(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的半徑為x.求出OM,根據(jù)CM2=OC2-OM2=CF2-FM2構(gòu)建方程即可解決問題;【詳解】(1)連接AO并延長交⊙O于點E,連接EC.∵AE是直徑,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切線,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的半徑為x.∵∠BCD=90°,∴BD是⊙O的直徑,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半徑為1.【點睛】本題考查切線的性質(zhì),垂徑定理,圓周角定理推論,勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題.23、(1)FG=CE,F(xiàn)G∥CE;(2)成立,理由見解析.【解析】(1)結(jié)論:FG=CE,F(xiàn)G∥CE,如圖1中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可;(2)結(jié)論仍然成立,如圖2中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.【詳解】(1)結(jié)論:FG=CE,F(xiàn)G∥CE.理由:如圖1中,設(shè)DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.故答案為FG=CE,F(xiàn)G∥CE;(2)結(jié)論仍然成立.理由:如圖2中,設(shè)DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省渭南市合陽縣2025屆高考考前模擬數(shù)學(xué)試題含解析
- 2025屆河南省漯河市第五高級中學(xué)高三第一次調(diào)研測試數(shù)學(xué)試卷含解析
- 山東省莒縣第一中學(xué)2025屆高考語文必刷試卷含解析
- 江蘇省無錫市重點中學(xué)2025屆高三最后一模英語試題含解析
- 黑龍江省牡丹江市三中2025屆高考語文三模試卷含解析
- 湖南省天壹名校2025屆高三3月份第一次模擬考試英語試卷含解析
- 分數(shù)基本性質(zhì)課件
- 安徽省肥東市高級中學(xué)2025屆高三下學(xué)期聯(lián)合考試英語試題含解析2
- 湖南省岳陽市岳陽一中2025屆高考語文五模試卷含解析
- 2025屆湖北省鄂東南五校一體聯(lián)盟聯(lián)考高考英語二模試卷含解析
- 【語文】北京市芳草地小學(xué)小學(xué)三年級上冊期末試卷(含答案)
- 讀書分享讀書交流會《中國民間故事》
- 跨省戶口網(wǎng)上遷移告知單
- 重大消防安全風(fēng)險管控責(zé)任清單(消防給水及消火栓系統(tǒng)、用電管理、用火、動火管理)
- 傳統(tǒng)醫(yī)學(xué)師承出師考核申請表中醫(yī)
- 屋面工程質(zhì)量控制
- 2022青海水電集團公開招聘高校畢業(yè)生上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 足球俱樂部試訓(xùn)個人簡歷
- 機電安裝工操作規(guī)程
- 2023年現(xiàn)場管理與改善手法
- 心跳驟停后目標體溫管理
評論
0/150
提交評論