2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆甘肅省天水市名校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標系內(nèi)的圖象大致為()A. B. C. D.2.給出四個實數(shù),2,0,-1,其中負數(shù)是(

)A. B.2 C.0 D.-13.兩名同學(xué)在一次用頻率估計概率的試驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制出統(tǒng)計圖如圖所示,則符合這一結(jié)果的試驗可能是()A.拋一枚硬幣,正面朝上的概率B.擲一枚正六面體的骰子,出現(xiàn)點的概率C.轉(zhuǎn)動如圖所示的轉(zhuǎn)盤,轉(zhuǎn)到數(shù)字為奇數(shù)的概率D.從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率4.定義A*B,B*C,C*D,D*B分別對應(yīng)圖形①、②、③、④:那么下列圖形中,可以表示A*D,A*C的分別是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)5.方程的根為()A. B. C.或 D.或6.如圖,在菱形ABCD中,∠BAD=120°,AB=2,點E是AB邊上的動點,過點B作直線CE的垂線,垂足為F,當點E從點A運動到點B時,點F的運動路徑長為()A. B. C.2 D.7.若關(guān)于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>08.把拋物線先向左平移個單位,再向下平移個單位,得到的拋物線的表達式是()A. B.C. D.9.小新拋一枚質(zhì)地均勻的硬幣,連續(xù)拋三次,硬幣落地均正面朝上,如果他第四次拋硬幣,那么硬幣正面朝上的概率為()A. B. C.1 D.10.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.2二、填空題(每小題3分,共24分)11.已知二次函數(shù)的圖像開口向上,則的值為________.12.如圖,在矩形ABCD中,AB=6,BC=4,M是AD的中點,N是AB邊上的動點,將△AMN沿MN所在直線折疊,得到△,連接,則的最小值是________13.關(guān)于x的一元二次方程kx2+3x﹣1=0有實數(shù)根,則k的取值范圍是_____.14.如圖,二次函數(shù)y=ax2+bx+c的圖像過點A(3,0),對稱軸為直線x=1,則方程ax2+bx+c=0的根為____.15.數(shù)據(jù)2,3,5,5,4的眾數(shù)是____.16.若方程x2﹣2x﹣1009=0有一個根是α,則2α2﹣4α+1的值為_____.17.如圖,在平面直角坐標系中,點A、B的坐標分別是(0,2)、(4,0),點P是直線y=2x+2上的一動點,當以P為圓心,PO為半徑的圓與△AOB的一條邊所在直線相切時,點P的坐標為__________.18.已知線段a=4cm,b=9cm,則線段a,b的比例中項為_________cm.三、解答題(共66分)19.(10分)如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.20.(6分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.21.(6分)如圖,在梯形中,,,,,,點在邊上,,點是射線上一個動點(不與點、重合),聯(lián)結(jié)交射線于點,設(shè),.(1)求的長;(2)當動點在線段上時,試求與之間的函數(shù)解析式,并寫出函數(shù)的定義域;(3)當動點運動時,直線與直線的夾角等于,請直接寫出這時線段的長.22.(8分)如圖,已知△ABC的頂點A、B、C的坐標分別是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)畫出△ABC關(guān)于原點O中心對稱的圖形△A1B1C1;(2)將△ABC繞點A按順時針方向旋轉(zhuǎn)90°后得到△AB2C2,畫出△AB2C2并求線段AB掃過的面積.23.(8分)如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點A(2,4),B(﹣4,m)兩點.(1)求k1,k2,b的值;(2)求△AOB的面積;(3)請直接寫出不等式≥k2x+b的解.24.(8分)甲口袋中裝有2個小球,它們分別標有數(shù)字1、2,乙口袋中裝有3個小球,它們分別標有數(shù)字3、4、現(xiàn)分別從甲、乙兩個口袋中隨機地各取出1個小球,請你用列舉法畫樹狀圖或列表的方法求取出的兩個小球上的數(shù)字之和為5的概率.25.(10分)已知:如圖,在矩形中,點為上一點,連接,過點作于點,與相似嗎?請說明理由.26.(10分)如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD;(2)求證:△AFD∽△CFE.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)拋物線的圖像,判斷出的符號,從而確定一次函數(shù)、反比例函數(shù)的圖像的位置即可.【詳解】解:由拋物線的圖像可知:橫坐標為1的點,即在第四象限,因此;∴雙曲線的圖像分布在二、四象限;由于拋物線開口向上,∴,∵對稱軸為直線,∴;∵拋物線與軸有兩個交點,∴;∴直線經(jīng)過一、二、四象限;故選:.【點睛】本題主要考查二次函數(shù),一次函數(shù)以及反比例函數(shù)的圖象與解析式的系數(shù)關(guān)系,熟練掌握函數(shù)解析式的系數(shù)對圖像的影響,是解題的關(guān)鍵.2、D【分析】根據(jù)負數(shù)的定義,負數(shù)小于0即可得出答案.【詳解】根據(jù)題意:負數(shù)是-1,故答案為:D.【點睛】此題主要考查了實數(shù),正確把握負數(shù)的定義是解題關(guān)鍵.3、D【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:A、擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項不符合題意;B、擲一枚正六面體的骰子,出現(xiàn)點的概率為,故此選項不符合題意;C、轉(zhuǎn)動如圖所示的轉(zhuǎn)盤,轉(zhuǎn)到數(shù)字為奇數(shù)的概率為,故此選項不符合題意;D、從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率為,故此選項符合題意.故選:D.【點睛】此題考查了利用頻率估計概率,屬于常見題型,明確大量反復(fù)試驗下頻率穩(wěn)定值即概率是解答的關(guān)鍵.4、B【分析】先判斷出算式中A、B、C、D表示的圖形,然后再求解A*D,A*C.【詳解】∵A*B,B*C,C*D,D*B分別對應(yīng)圖形①、②、③、④可得出A對應(yīng)豎線、B對應(yīng)大正方形、C對應(yīng)橫線,D對應(yīng)小正方形∴A*D為豎線和小正方形組合,即(2)A*C為豎線和橫線的組合,即(4)故選:B【點睛】本題考查歸納總結(jié),解題關(guān)鍵是根據(jù)已知條件,得出A、B、C、D分別代表的圖形.5、D【分析】用直接開平方法解方程即可.【詳解】x-1=±1x1=2,x2=0故選:D【點睛】本題考查的是用直接開平方法解一元二次方程,關(guān)鍵是要掌握開平方的方法,解題時要注意符號.6、B【分析】如圖,根據(jù)圓周角定理可得點F在以BC為直徑的圓上,根據(jù)菱形的性質(zhì)可得∠BCM=60°,根據(jù)圓周角定理可得∠BOM=120°,利用弧長公式即可得答案.【詳解】如圖,取的中點,中點M,連接OM,BM,∵四邊形是菱形,∴BM⊥AC,∴當點與重合時,點與中點重合,∵,∴點的運動軌跡是以為直徑的圓弧,∵四邊形是菱形,,∴,∴,∴的長.故選:B.【點睛】本題考查菱形的性質(zhì)、圓周角定理、弧長公式及軌跡,根據(jù)圓周角定理確定出點F的軌跡并熟練掌握弧長公式是解題關(guān)鍵.7、B【解析】根據(jù)一元二次方程定義,首先要求的二次項系數(shù)不為零,再根據(jù)已知條件,方程有兩個不相等的實數(shù)根,令根的判別式大于零即可.【詳解】解:由題意得,解得,;且,即,解得.綜上所述,且.【點睛】本題主要考查一元二次方程的定義和根的判別式,理解掌握定義,熟練運用根的判別式是解答關(guān)鍵.8、B【分析】先求出平移后的拋物線的頂點坐標,再利用頂點式拋物線解析式寫出即可.【詳解】解:拋物線y=-x1的頂點坐標為(0,0),

先向左平移1個單位再向下平移1個單位后的拋物線的頂點坐標為(-1,-1),

所以,平移后的拋物線的解析式為y=-(x+1)1-1.

故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用根據(jù)規(guī)律利用點的變化確定函數(shù)解析式.9、A【解析】試題分析:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是.故選A.考點:概率公式.10、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質(zhì),掌握圓周角定理的推論及相似三角形的性質(zhì)是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、2【分析】根據(jù)題意:的最高次數(shù)為2,由開口向上知二次項系數(shù)大于0,據(jù)此求解即可.【詳解】∵是二次函數(shù),

∴,即

解得:,

又∵圖象的開口向上,

∴,

∴.故答案為:.【點睛】本題綜合考查了二次函數(shù)的性質(zhì)及定義,要注意二次項系數(shù)的取值范圍.12、【分析】由折疊的性質(zhì)可得AM=A′M=2,可得點A′在以點M為圓心,AM為半徑的圓上,當點A′在線段MC上時,A′C有最小值,由勾股定理可求MC的長,即可求A′C的最小值.【詳解】∵四邊形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD邊的中點,∴AM=MD=2,∵將△AMN沿MN所在直線折疊,∴AM=A′M=2,∴點A′在以點M為圓心,AM為半徑的圓上,∴如圖,當點A′在線段MC上時,A′C有最小值,∵MC===2,∴A′C的最小值=MC?MA′=2?2,故答案為:2?2.【點睛】本題主要考查了翻折變換,矩形的性質(zhì)、勾股定理,解題的關(guān)鍵是分析出A′點運動的軌跡.13、k?-94【解析】利用判別式,根據(jù)不等式即可解決問題.【詳解】∵關(guān)于x的一元二次方程kx2+3x﹣1=1有實數(shù)根,∴△≥1且k≠1,∴9+4k≥1,∴k?-94,且故答案為k?-94且【點睛】本題考查根的判別式,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:①當△>1時,方程有兩個不相等的兩個實數(shù)根;②當△=1時,方程有兩個相等的兩個實數(shù)根;③當△<1時,方程無實數(shù)根.上面的結(jié)論反過來也成立.14、【分析】根據(jù)點A的坐標及拋物線的對稱軸可得拋物線與x軸的兩個交點坐標,從而求得方程的解.【詳解】解:由二次函數(shù)y=ax2+bx+c的圖像過點A(3,0),對稱軸為直線x=1可得:拋物線與x軸交于(3,0)和(-1,0)即當y=0時,x=3或-1∴ax2+bx+c=0的根為故答案為:【點睛】本題考查拋物線的對稱性及二次函數(shù)與一元二次方程,利用對稱性求出拋物線與x軸的交點坐標是本題的解題關(guān)鍵.15、1【分析】由于眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個,由此即可確定這組數(shù)據(jù)的眾數(shù).【詳解】解:∵1是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),∴這組數(shù)據(jù)的眾數(shù)為1.故答案為:1.【點睛】本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的眾數(shù)的能力,解題關(guān)鍵是要明確定義,讀懂題意.16、1【分析】先利用一元二次方程根的定義得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【詳解】解:方程x2﹣2x﹣1009=0有一個根是α,則α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案為:1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、(0,2),(﹣1,0),(﹣,1).【分析】先求出點C的坐標,分為三種情況:圓P與邊AO相切時,當圓P與邊AB相切時,當圓P與邊BO相切時,求出對應(yīng)的P點即可.【詳解】∵點A、B的坐標分別是(0,2)、(4,0),∴直線AB的解析式為y=-x+2,∵點P是直線y=2x+2上的一動點,∴兩直線互相垂直,即PA⊥AB,且C(-1,0),當圓P與邊AB相切時,PA=PO,∴PA=PC,即P為AC的中點,∴P(-,1);當圓P與邊AO相切時,PO⊥AO,即P點在x軸上,∴P點與C重合,坐標為(-1,0);當圓P與邊BO相切時,PO⊥BO,即P點在y軸上,∴P點與A重合,坐標為(0,2);故符合條件的P點坐標為(0,2),(-1,0),(-,1),故答案為(0,2),(-1,0),(-,1).【點睛】本題主要考查待定系數(shù)法確定一次函數(shù)關(guān)系式,一次函數(shù)的應(yīng)用,及直角三角形的性質(zhì),直線與圓的位置關(guān)系,可分類3種情況圓與△AOB的三邊分別相切,根據(jù)直線與圓的位置關(guān)系可求解點的坐標.18、6【分析】設(shè)比例中項為c,得到關(guān)于c的方程即可解答.【詳解】設(shè)比例中項為c,由題意得:,∴,∴c1=6,c2=-6(不合題意,舍去)故填6.【點睛】此題考查線段成比例,理解比例中項的含義即可正確解答.三、解答題(共66分)19、(1)見解析;(2)見解析【分析】(1)連結(jié)OC,利用直角三角形斜邊中線等于斜邊一半可得OA=OB=OC,所以A,B,C三點在以O(shè)為圓心,OA長為半徑的圓上;(2)連結(jié)OD,可得OA=OB=OC=OD,所以A,B,C,D四點在以O(shè)為圓心,OA長為半徑的圓上.【詳解】(1)連結(jié)OC,在中,,的中點,∴OC=OA=OB,∴三點在以為圓心的圓上;(2)連結(jié)OD,∵,∴OA=OB=OC=OD,∴四點在以為圓心的圓上.【點睛】此題考查了圓的定義:到定點的距離等于定長的點都在同一個圓上,所以證明幾個點共圓,只需要證明這幾個點到某個定點的距離相等即可.20、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當∠ABD=∠DBC=β時,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當∠ABD=∠C=β時,過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,則cos∠ABD=cosβ===cosC,則tanC=;綜上,tan∠C的值為或.【點睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)值等知識.屬于圓的綜合題,解決本題需要我們熟練各部分的內(nèi)容,對學(xué)生的綜合能力要求較高,一定要注意將所學(xué)知識貫穿起來.21、(1);(1);(3)線段的長為或13【分析】(1)如圖1中,作AH⊥BC于H,解直角三角形求出EH,CH即可解決問題.

(1)延長AD交BM的延長線于G.利用平行線分線段成比例定理構(gòu)建關(guān)系式即可解決問題.

(3)分兩種情形:①如圖3-1中,當點M在線段DC上時,∠BNE=∠ABC=45°.②如圖3-1中,當點M在線段DC的延長線上時,∠ANB=∠ABE=45°,利用相似三角形的性質(zhì)即可解決問題.【詳解】:(1)如圖1中,作AH⊥BC于H,

∵AD∥BC,∠C=90°,

∴∠AHC=∠C=∠D=90°,

∴四邊形AHCD是矩形,

∴AD=CH=1,AH=CD=3,

∵tan∠AEC=3,

∴=3,

∴EH=1,CE=1+1=3,

∴BE=BC-CE=5-3=1.(1)延長,交于點,∵AG∥BC,∴,∴,∵,∴.解得:(3)①如圖3-1中,當點M在線段DC上時,∠BNE=∠ABC=45°,∵,,則有,解得:②如圖3-1中,當點M在線段DC的延長線上時,∠ANB=∠ABE=45°,

∵,∴,則有,解得綜上所述:線段的長為或13.【點睛】此題考查四邊形綜合題,相似三角形的判定和性質(zhì),矩形的判定和性質(zhì),解直角三角形,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.22、(1)見解析;(2)【分析】(1)分別作出A,B,C的對應(yīng)點A1,B1,C1即可.(2)分別作出B,C的對應(yīng)點B2,C2即可,再利用扇形的面積公式計算即可.【詳解】解(1)如圖,△A1B1C1即為所求.(2)如圖,△AB2C2即為所求.線段AB掃過的面積==【點睛】本題考查作圖旋轉(zhuǎn)變換,扇形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.23、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.【解析】(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征,即可得出反比例函數(shù)解析式,再結(jié)合點B的橫坐標即可得出點B的坐標,根據(jù)點A、B的坐標利用待定系數(shù)法,即可求出一次函數(shù)解析式;(1)根據(jù)一次函數(shù)圖象上點的坐標特征,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論