上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題含解析_第1頁
上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題含解析_第2頁
上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題含解析_第3頁
上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題含解析_第4頁
上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市上海理工大附中2023-2024學年高三上數學期末教學質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-32.將函數向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區(qū)間上為增函數B.函數最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根3.如圖是二次函數的部分圖象,則函數的零點所在的區(qū)間是()A. B. C. D.4.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元5.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.6.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.37.觀察下列各式:,,,,,,,,根據以上規(guī)律,則()A. B. C. D.8.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.69.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.10.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④11.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數記為.則的表達式為().A. B. C. D.12.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________.14.設函數,若對于任意的,∈[2,,≠,不等式恒成立,則實數a的取值范圍是.15.已知集合,,則____________.16.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.18.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.19.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.21.(12分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.22.(10分)已知是各項都為正數的數列,其前項和為,且為與的等差中項.(1)求證:數列為等差數列;(2)設,求的前100項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據求出再根據也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數的幾何意義,意在考查學生對這些知識的理解掌握水平.2、C【解析】

由輔助角公式化簡三角函數式,結合三角函數圖象平移變換即可求得的解析式,結合正弦函數的圖象與性質即可判斷各選項.【詳解】函數,則,將向左平移個單位,可得,由正弦函數的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數式的化簡,三角函數圖象平移變換,正弦函數圖象與性質的綜合應用,屬于中檔題.3、B【解析】

根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數的圖象及函數的零點,屬于基礎題.4、D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.5、B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.6、B【解析】

過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.7、B【解析】

每個式子的值依次構成一個數列,然后歸納出數列的遞推關系后再計算.【詳解】以及數列的應用根據題設條件,設數字,,,,,,,構成一個數列,可得數列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數列的項歸納出遞推關系,從而可確定數列的一些項.8、B【解析】

根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.9、C【解析】

根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.10、D【解析】

根據面面垂直的判定定理可判斷①;根據空間面面平行的判定定理可判斷②;根據線面平行的判定定理可判斷③;根據面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.11、D【解析】

根據題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數目,進而計算可得答案.【詳解】解:根據題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數列遞推公式的應用,屬于中檔題.12、D【解析】

先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.14、【解析】試題分析:由題意得函數在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數a的取值范圍是考點:函數單調性15、【解析】

由于,,則.16、【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯立,求出弦長,利用定義可得,進而求出?!驹斀狻坑芍?,焦點,所以直線:,代入得,即,設,,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)(3)【解析】

(1)假設公差,公比,根據等差數列和等比數列的通項公式,化簡式子,可得,,然后利用公式法,可得結果.(2)根據(1)的結論,利用錯位相減法求和,可得結果.(3)計算出,代值計算并化簡,可得結果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數列和等比數列的綜合應用,以及利用錯位相減法求和,屬基礎題.18、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.19、(1)(2)答案不唯一,見解析【解析】

(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.20、(1)(2)分布列見解析,期望為20【解析】

利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關鍵;屬于中檔題、??碱}型.21、(1)證明見解析;(2)存在,【解析】

(1)將點代入橢圓方程得到,結合基本不等式,求得取得最小值時,進而證得橢圓的離心率為.(2)當直線的斜率不存在時,根據橢圓的對稱性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論