版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省鄂東南五校一體聯(lián)盟聯(lián)考2024屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某班設(shè)計(jì)了一個(gè)八邊形的班徽(如圖),它由腰長為1,頂角為的四個(gè)等腰三角形,及其底邊構(gòu)成的正方形所組成,該八邊形的面積為A.; B.C. D.2.一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄?,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是()A.127 B.29 C.43.已知點(diǎn)均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.4.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.5.已知變量和滿足相關(guān)關(guān)系,變量和滿足相關(guān)關(guān)系.下列結(jié)論中正確的是()A.與正相關(guān),與正相關(guān) B.與正相關(guān),與負(fù)相關(guān)C.與負(fù)相關(guān),與y正相關(guān) D.與負(fù)相關(guān),與負(fù)相關(guān)6.如圖,兩點(diǎn)為山腳下兩處水平地面上的觀測點(diǎn),在兩處觀察點(diǎn)觀察山頂點(diǎn)的仰角分別為,若,,且觀察點(diǎn)之間的距離比山的高度多100米,則山的高度為()A.100米 B.110米 C.120米 D.130米7.若實(shí)數(shù),滿足不等式組則的最大值為()A. B.2 C.5 D.78.在中,,則是()A.等邊三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形9.法國學(xué)者貝特朗發(fā)現(xiàn),在研究事件A“在半徑為1的圓內(nèi)隨機(jī)地取一條弦,其長度超過圓內(nèi)接等邊三角形的邊長3”的概率的過程中,基于對“隨機(jī)地取一條弦”的含義的的不同理解,事件A的概率PA存在不同的容案該問題被稱為貝特朗悖論現(xiàn)給出種解釋:若固定弦的一個(gè)端點(diǎn),另個(gè)端點(diǎn)在圓周上隨機(jī)選取,則PA.12 B.13 C.110.已知中,,,為邊上的中點(diǎn),則()A.0 B.25 C.50 D.100二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是數(shù)列的前項(xiàng)和,且,,則__________.12.在中,,點(diǎn)在邊上,若,的面積為,則___________13.已知圓錐的表面積等于,其側(cè)面展開圖是一個(gè)半圓,則底面圓的半徑為__________.14.函數(shù)是定義域?yàn)镽的奇函數(shù),當(dāng)時(shí),則的表達(dá)式為________.15.在中,,則______.16.已知直線l與圓C:交于A,B兩點(diǎn),,則滿足條件的一條直線l的方程為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)設(shè),求滿足的實(shí)數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).18.手機(jī)支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機(jī))對所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個(gè)人,把這100個(gè)人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.組數(shù)第l組第2組第3組第4組第5組分組頻數(shù)203630104(1)求;(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.19.已知等差數(shù)列an滿足a3=5,a6=a4(1)求數(shù)列an,b(2)設(shè)cn=anbn220.為了了解某市高中學(xué)生的漢字書寫水平,在全市范圍內(nèi)隨機(jī)抽取了近千名學(xué)生參加漢字聽寫考試,將所得數(shù)據(jù)進(jìn)行分組,分組區(qū)間為:,并繪制出頻率分布直方圖,如圖所示.(1)求頻率分布直方圖中的值,并估計(jì)該市高中學(xué)生的平均成績;(2)設(shè)、、、四名學(xué)生的考試成績在區(qū)間內(nèi),、兩名學(xué)生的考試成績在區(qū)間內(nèi),現(xiàn)從這6名學(xué)生中任選兩人參加座談會,求學(xué)生、至少有一人被選中的概率.21.已知三棱錐的體積為1.在側(cè)棱上取一點(diǎn),使,然后在上取一點(diǎn),使,繼續(xù)在上取一點(diǎn),使,……按上述步驟,依次得到點(diǎn),記三棱錐的體積依次構(gòu)成數(shù)列,數(shù)列的前項(xiàng)和.(1)求數(shù)列和的通項(xiàng)公式;(2)記,為數(shù)列的前項(xiàng)和,若不等式對一切恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個(gè)等腰三角形面積;故八邊形面積.故本題正確答案為A.考點(diǎn):余弦定理和三角形面積的求解.【方法點(diǎn)晴】本題是一道關(guān)于三角函數(shù)在幾何中的應(yīng)用的題目,掌握正余弦定理是解題的關(guān)鍵;首先根據(jù)三角形面積公式求出個(gè)三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進(jìn)而得到正方形的面積,最后得到答案.2、C【解題分析】
先求出基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),由此能求出在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率.【題目詳解】∵一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,∴基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),則在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率P=1227=故選:C【題目點(diǎn)撥】本題考查概率的求法,考查古典概型、正方體性質(zhì)等基礎(chǔ)知識,考查推理論證能力、空間想象能力,考查函數(shù)與方程思想,是基礎(chǔ)題.3、A【解題分析】
設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.由此可計(jì)算球半徑.【題目詳解】如圖,設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【題目點(diǎn)撥】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.4、B【解題分析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進(jìn)而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【題目詳解】如圖,因?yàn)?又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【題目點(diǎn)撥】本題主要考查學(xué)生空間想象以及數(shù)學(xué)建模能力,能夠依據(jù)條件建立合適的模型是解題的關(guān)鍵.5、B【解題分析】
根據(jù)相關(guān)關(guān)系式,由一次項(xiàng)系數(shù)的符號即可判斷是正相關(guān)還是負(fù)相關(guān).【題目詳解】變量和滿足相關(guān)關(guān)系,由可知變量和為正相關(guān)變量和滿足相關(guān)關(guān)系,由,可知變量和為負(fù)相關(guān)所以B為正確選項(xiàng)故選:B【題目點(diǎn)撥】本題考查了通過相關(guān)關(guān)系式子判斷正負(fù)相關(guān)性,屬于基礎(chǔ)題.6、A【解題分析】
設(shè)山的高度為,求出AB=2x,根據(jù),求出山的高度.【題目詳解】設(shè)山的高度為,如圖,由,有.在中,,有,又由觀察點(diǎn)之間的距離比山的高度多100,有.故山的高度為100.故選A【題目點(diǎn)撥】本題主要考查解三角形的實(shí)際應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.7、C【解題分析】
利用線性規(guī)劃數(shù)形結(jié)合分析解答.【題目詳解】由約束條件,作出可行域如圖:由得A(3,-2).由,化為,由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最小,有最大值為5.故選C.【題目點(diǎn)撥】本題主要考查利用線性規(guī)劃求最值,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.8、C【解題分析】
由二倍角公式可得,,再根據(jù)誘導(dǎo)公式可得,然后利用兩角和與差的余弦公式,即可將化簡成,所以,即可求得答案.【題目詳解】因?yàn)?,,所以,,即,.故選:C.【題目點(diǎn)撥】本題主要考查利用二倍角公式,兩角和與差的余弦公式進(jìn)行三角恒等變換,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.9、B【解題分析】
由幾何概型中的角度型得:P(A)=2π【題目詳解】設(shè)固定弦的一個(gè)端點(diǎn)為A,則另一個(gè)端點(diǎn)在圓周上BC劣弧上隨機(jī)選取即可滿足題意,則P(A)=2π故選:B.【題目點(diǎn)撥】本題考查了幾何概型中的角度型,屬于基礎(chǔ)題.10、C【解題分析】
三角形為直角三角形,CM為斜邊上的中線,故可知其長度,由向量運(yùn)算法則,對式子進(jìn)行因式分解,由平行四邊形法則,求出向量,由長度計(jì)算向量積.【題目詳解】由勾股定理逆定理可知三角形為直角三角形,CM為斜邊上的中線,所以,原式=.故選C.【題目點(diǎn)撥】本題考查向量的線性運(yùn)算及數(shù)量積,數(shù)量積問題一般要將兩個(gè)向量轉(zhuǎn)化為已知邊長和夾角的兩向量,但本題經(jīng)化簡能得到共線的兩向量所以直接根據(jù)模的大小計(jì)算即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】原式為,整理為:,即,即數(shù)列是以-1為首項(xiàng),-1為公差的等差的數(shù)列,所以,即.【題目點(diǎn)撥】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時(shí)構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項(xiàng)公式.12、【解題分析】
由,的面積為可以求解出三角形,再通過,我們可以得出(兩三角形等高)再利用正弦形式表示各自面積,即能得出的值.【題目詳解】,的面積為,所以為等邊三角形,又所以(等高),又所以填寫2【題目點(diǎn)撥】已知三角形面積及一邊一角,我們能把形成該角的另外一邊算出,從而把三角形所有量都能計(jì)算出來(如果需要),求兩角正弦值的比值,我們更多聯(lián)想到正弦定理的公式,或面積公式.13、【解題分析】
設(shè)出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑。【題目詳解】設(shè)圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【題目點(diǎn)撥】本題考查根據(jù)圓錐的表面積求底面圓半徑,屬于基礎(chǔ)題。14、【解題分析】試題分析:當(dāng)時(shí),,,因是奇函數(shù),所以,是定義域?yàn)镽的奇函數(shù),所以,所以考點(diǎn):函數(shù)解析式、函數(shù)的奇偶性15、【解題分析】
由已知求得,進(jìn)一步求得,即可求出.【題目詳解】由,得,即,,則,,,則.【題目點(diǎn)撥】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.16、(答案不唯一)【解題分析】
確定圓心到直線的距離,即可求直線的方程.【題目詳解】由題意得圓心坐標(biāo),半徑,,∴圓心到直線的距離為,∴滿足條件的一條直線的方程為.故答案為:(答案不唯一).【題目點(diǎn)撥】本題考查直線和圓的方程的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【題目詳解】(1)當(dāng)時(shí),,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【題目點(diǎn)撥】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.18、(1);(2)第1組2人,第3組3人,第4組1人;(3)【解題分析】
(1)直接計(jì)算.(2)根據(jù)分層抽樣的規(guī)律按照比例抽取.(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,排列出所有可能,再計(jì)算滿足條件的個(gè)數(shù),相除得到答案.【題目詳解】解:(1)由題意可知,,(2)第1,3,4組共有60人,所以抽取的比例是則從第1組抽取的人數(shù)為,從第3組抽取的人數(shù)為,從第4組抽取的人數(shù)為;(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,則從這6人中隨機(jī)抽取2人有如下種情形:,,,,,,,,,,,,,,共有15個(gè)基本事件.其中符合“抽取的2人來自同一個(gè)組”的基本事件有,,,共4個(gè)基本事件,所以抽取的2人來自同一個(gè)組的概率.【題目點(diǎn)撥】本題考查了頻率直方圖,分層抽樣,概率的計(jì)算,意在考查學(xué)生解決問題的能力.19、(1)an=2n-1,【解題分析】
(1)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式即可求得;(2)由(1)知,cn=anbn2【題目詳解】(1)設(shè)等差數(shù)列an的公差為d,等比數(shù)列bn的公比為因?yàn)閍6=a4+4所以an由b3b5又顯然b4必與b2同號,所以所以q2=b所以bn(2)由(1)知,cn則Tn12①-②,得1=1+1-所以Tn【題目點(diǎn)撥】用錯(cuò)位相減法求和應(yīng)注意的問題(1)要善于識別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.20、(1);(2).【解題分析】
(1)由頻率分布直方圖能求出a.由此能估計(jì)該市高中學(xué)生的平均成績;(2)現(xiàn)從這6名學(xué)生中任選兩人參加座談會,求出基本事件總數(shù),再學(xué)生M、N至少有一人被選中包含的基本事件個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版工程車租賃合同模板范本
- 2025年度個(gè)人房產(chǎn)抵押擔(dān)保債務(wù)重組合同4篇
- 2025年度道路工程保險(xiǎn)合同書3篇
- 2025年度汽車貸款逾期違約擔(dān)保合同4篇
- 2025年度個(gè)人財(cái)產(chǎn)抵押反擔(dān)保協(xié)議4篇
- 2025年紫金財(cái)產(chǎn)保險(xiǎn)股份有限公司招聘筆試參考題庫含答案解析
- 2025年湖南藝創(chuàng)建筑工程有限公司招聘筆試參考題庫含答案解析
- 2025年度醫(yī)療健康產(chǎn)業(yè)貸款合同范本4篇
- 2025年廣西來賓市自來水有限公司招聘筆試參考題庫含答案解析
- 2025年南京航空航天大學(xué)后勤集團(tuán)招聘筆試參考題庫含答案解析
- 第7課《中華民族一家親》(第一課時(shí))(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 急診科十大護(hù)理課件
- 山東省濟(jì)寧市2023-2024學(xué)年高一上學(xué)期1月期末物理試題(解析版)
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務(wù)輔助人員211人筆試重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省濟(jì)南市歷城區(qū)2024-2025學(xué)年七年級上學(xué)期期末數(shù)學(xué)模擬試題(無答案)
- 國家重點(diǎn)風(fēng)景名勝區(qū)登山健身步道建設(shè)項(xiàng)目可行性研究報(bào)告
- 投資計(jì)劃書模板計(jì)劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學(xué)年九年級語文上學(xué)期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論