版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆貴州省貴陽(yáng)市普通高中數(shù)學(xué)高一下期末聯(lián)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖的折線圖為某小區(qū)小型超市今年一月份到五月份的營(yíng)業(yè)額和支出數(shù)據(jù)(利潤(rùn)=營(yíng)業(yè)額-支出),根據(jù)折線圖,下列說(shuō)法中正確的是()A.該超市這五個(gè)月中,利潤(rùn)隨營(yíng)業(yè)額的增長(zhǎng)在增長(zhǎng)B.該超市這五個(gè)月中,利潤(rùn)基本保持不變C.該超市這五個(gè)月中,三月份的利潤(rùn)最高D.該超市這五個(gè)月中的營(yíng)業(yè)額和支出呈正相關(guān)2.設(shè)點(diǎn)M是直線上的一個(gè)動(dòng)點(diǎn),M的橫坐標(biāo)為,若在圓上存在點(diǎn)N,使得,則的取值范圍是()A. B. C. D.3.等差數(shù)列an的公差d<0,且a12=a212,則數(shù)列aA.9 B.10 C.10和11 D.11和124.一個(gè)圓柱的側(cè)面展開(kāi)圖是一個(gè)正方形,這個(gè)圓柱全面積與側(cè)面積的比為()A. B. C. D.5.函數(shù)y=sin2x的圖象可由函數(shù)A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π66.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.7.已知點(diǎn)到直線的距離為1,則的值為()A. B. C. D.8.設(shè)實(shí)數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.9.己知,,若軸上方的點(diǎn)滿足對(duì)任意,恒有成立,則點(diǎn)縱坐標(biāo)的最小值為()A. B. C.1 D.210.已知等差數(shù)列:1,a1,a2,9;等比數(shù)列:-9,b1,b2,b3,-1.則b2(a2-a1)的值為()A.8 B.-8C.±8 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.當(dāng)實(shí)數(shù)a變化時(shí),點(diǎn)到直線的距離的最大值為_(kāi)______.12.若關(guān)于的不等式有解,則實(shí)數(shù)的取值范圍為_(kāi)_______.13.已知等比數(shù)列中,,,則該等比數(shù)列的公比的值是______.14.已知扇形的圓心角為,半徑為5,則扇形的弧長(zhǎng)_________.15.正項(xiàng)等比數(shù)列中,,,則公比__________.16.已知直線:與直線:互相平行,則直線與之間的距離為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知,是平面內(nèi)兩個(gè)不共線的非零向量,,,且,,三點(diǎn)共線.(1)求實(shí)數(shù)的值;(2)若,,求的坐標(biāo);(3)已知,在(2)的條件下,若,,,四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,求點(diǎn)的坐標(biāo).18.已知函數(shù),,(1)求的最小正周期;(2)若,求的最大值和最小值,并寫出相應(yīng)的x的值.19.已知數(shù)列滿足且,設(shè),.(1)求;(2)求的通項(xiàng)公式;(3)求.20.已知向量,的夾角為120°,且||=2,||=3,設(shè)32,2.(Ⅰ)若⊥,求實(shí)數(shù)k的值;(Ⅱ)當(dāng)k=0時(shí),求與的夾角θ的大?。?1.如圖,在四棱錐P?ABCD中,AB//CD,且.(1)證明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
根據(jù)折線圖,分析出超市五個(gè)月中利潤(rùn)的情況以及營(yíng)業(yè)額和支出的相關(guān)性.【題目詳解】對(duì)于A選項(xiàng),五個(gè)月的利潤(rùn)依次為:,其中四月比三月是下降的,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),五月的月份是一月和四月的兩倍,說(shuō)明利潤(rùn)有比較大的波動(dòng),故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),五個(gè)月的利潤(rùn)依次為:,所以五月的利潤(rùn)最高,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),根據(jù)圖像可知,超市這五個(gè)月中的營(yíng)業(yè)額和支出呈正相關(guān),故D選項(xiàng)正確.故選:D【題目點(diǎn)撥】本小題主要考查折線圖的分析與理解,屬于基礎(chǔ)題.2、D【解題分析】
由題意畫出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點(diǎn)為P,數(shù)形結(jié)合找出M點(diǎn)滿足|MP|≤|OP|的范圍,從而得到答案.【題目詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點(diǎn)P,要使在圓上存在點(diǎn)N,使得,使得最大值大于或等于時(shí)一定存在點(diǎn)N,使得,而當(dāng)MN與圓相切時(shí),此時(shí)|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫圖進(jìn)行分析可得,屬于中等題.3、C【解題分析】
利用等差數(shù)列性質(zhì)得到a11=0,再判斷S10【題目詳解】等差數(shù)列an的公差d<0,且a根據(jù)正負(fù)關(guān)系:S10或S故答案選C【題目點(diǎn)撥】本題考查了等差數(shù)列的性質(zhì),Sn的最大值,將Sn的最大值轉(zhuǎn)化為4、A【解題分析】解:設(shè)圓柱底面積半徑為r,則高為2πr,全面積:側(cè)面積=[(2πr)2+2πr2]:(2πr)2這個(gè)圓柱全面積與側(cè)面積的比為,故選A5、B【解題分析】
直接利用函數(shù)圖象平移規(guī)律得解.【題目詳解】函數(shù)y=sin2x-π可得函數(shù)y=sin整理得:y=故選:B【題目點(diǎn)撥】本題主要考查了函數(shù)圖象平移規(guī)律,屬于基礎(chǔ)題。6、D【解題分析】因?yàn)樗倪呅问瞧叫兴倪呅?,所以,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.7、D【解題分析】
根據(jù)點(diǎn)到直線的距離公式列式求解參數(shù)即可.【題目詳解】由題,,因?yàn)?故.故選:D【題目點(diǎn)撥】本題主要考查了點(diǎn)到線的距離公式求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.8、C【解題分析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【題目詳解】作出約束條件表示的可行域如圖,化目標(biāo)函數(shù)為,聯(lián)立,解得,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),z取得最大值11,故選:C.【題目點(diǎn)撥】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.9、D【解題分析】
由題意首先利用平面向量的坐標(biāo)運(yùn)算法則確定縱坐標(biāo)的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點(diǎn)P縱坐標(biāo)的最小值即可.【題目詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可得的最小值為,則的最小值為.即點(diǎn)縱坐標(biāo)的最小值為2.故選D.【題目點(diǎn)撥】本題主要考查平面向量的坐標(biāo)運(yùn)算,二次函數(shù)最值的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.10、B【解題分析】a2-a1=d=9-13又b22=b1b因?yàn)閎2與-9,-1同號(hào),所以b2=-3.所以b2(a2-a1)=-3×8本題選擇B選項(xiàng).二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由已知直線方程求得直線所過(guò)定點(diǎn),再由兩點(diǎn)間的距離公式求解.【題目詳解】由直線,得,聯(lián)立,解得.直線恒過(guò)定點(diǎn),到直線的最大距離.故答案為:.【題目點(diǎn)撥】本題考查點(diǎn)到直線距離最值的求法,考查直線的定點(diǎn)問(wèn)題,是基礎(chǔ)題.12、【解題分析】
利用判別式可求實(shí)數(shù)的取值范圍.【題目詳解】不等式有解等價(jià)于有解,所以,故或,填.【題目點(diǎn)撥】本題考查一元二次不等式有解問(wèn)題,屬于基礎(chǔ)題.13、【解題分析】
根據(jù)等比通項(xiàng)公式即可求解【題目詳解】故答案為:【題目點(diǎn)撥】本題考查等比數(shù)列公比的求解,屬于基礎(chǔ)題14、【解題分析】
根據(jù)扇形的弧長(zhǎng)公式進(jìn)行求解即可.【題目詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長(zhǎng)l=rα5.故答案為:.【題目點(diǎn)撥】本題主要考查扇形的弧長(zhǎng)公式的計(jì)算,熟記弧長(zhǎng)公式是解決本題的關(guān)鍵,屬于基礎(chǔ)題.15、【解題分析】
根據(jù)題意,由等比數(shù)列的性質(zhì)可得,進(jìn)而分析可得答案.【題目詳解】根據(jù)題意,等比數(shù)列中,,則,又由數(shù)列是正項(xiàng)的等比數(shù)列,所以.【題目點(diǎn)撥】本題主要考查了等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式,以及注意數(shù)列是正項(xiàng)等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、10【解題分析】
利用兩直線平行,先求出,再由兩平行線的距離公式求解即可【題目詳解】由題意,,所以,,所以直線:,化簡(jiǎn)得,由兩平行線的距離公式:.故答案為:10【題目點(diǎn)撥】本題主要考查兩直線平行的充要條件,兩直線和平行的充要條件是,考查兩平行線間的距離公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3).【解題分析】
(1)根據(jù),,三點(diǎn)共線,列出向量與共線的表達(dá)式,然后根據(jù)坐標(biāo)求解即可;(2)根據(jù),列坐標(biāo)即可求解;(3)根據(jù)平行四邊形可以推出對(duì)邊的向量相等,根據(jù)向量相等代入坐標(biāo)求解即可求出點(diǎn)的坐標(biāo).【題目詳解】(1),∵,,三點(diǎn)共線,∴存在實(shí)數(shù),使得,即,得,∵,是平面內(nèi)兩個(gè)不共線的非零向量,∴,解得,;(2);(3)∵,,,四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,∴,設(shè),則,∵,∴,解得,即點(diǎn)的坐標(biāo)為.【題目點(diǎn)撥】本題主要考查了平面向量共線,平面向量的線性運(yùn)算,平面向量的相等,屬于一般題.18、(1)(2)時(shí)最大值為2,時(shí)最小值【解題分析】
(1)由二倍角公式和輔助角公式可得,再由周期公式,可得所求值(2)由的范圍,可得的范圍,由于余弦函數(shù)的圖象和性質(zhì),可得所求最值.【題目詳解】(1)函數(shù),可得的最小正周期為;(2),,可得,,可得當(dāng)即時(shí),可得取得最大值2;當(dāng),即時(shí),可得取得最小值.【題目點(diǎn)撥】本題考查二倍角公式和兩角差的余弦函數(shù),考查余弦函數(shù)的圖象和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.19、(1),,,;(1),;(3).【解題分析】
(1)依次代入計(jì)算,可求得;(1)歸納出,并用數(shù)學(xué)歸納法證明;(3)用裂項(xiàng)相消法求和,然后求極限.【題目詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學(xué)歸納法證明:1°n=1,n=1時(shí),由(1)知成立,1°假設(shè)n=k(k>1)時(shí),結(jié)論成立,即bk=1k1,則n=k+1時(shí),ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時(shí)結(jié)論成立,∴對(duì)所有正整數(shù)n,bn=1n1.(3)由(1)知n1時(shí),,∴,.【題目點(diǎn)撥】本題考查用歸納法求數(shù)列的通項(xiàng)公式,考查用裂項(xiàng)相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項(xiàng)公式時(shí),可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項(xiàng),然后歸納出通項(xiàng)公式,并用數(shù)學(xué)歸納法證明,這對(duì)學(xué)生的歸納推理能力有一定的要求,這也就是我們平常所學(xué)的從特殊到一般的推理方法.20、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)利用⊥,結(jié)合向量的數(shù)量積的運(yùn)算公式,得到關(guān)于的方程,即可求解;(Ⅱ)當(dāng)時(shí),利用向量的數(shù)量積的運(yùn)算公式,以及向量的夾角公式,即可求解.【題目詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當(dāng)k=0時(shí),,則.因?yàn)?,由向量的夾角公式,可得,又因?yàn)?≤θ≤π,∴,所以與的夾角θ的大小為.【題目點(diǎn)撥】本題主要考查了向量的數(shù)量積的運(yùn)算,以及向量的夾角公式的應(yīng)用,其中解答中熟記向量的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(1)見(jiàn)解析;(2).【解題分析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,從而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面內(nèi)作,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國(guó)塑料夾徽章行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)中皮錢包行業(yè)投資前景及策略咨詢研究報(bào)告
- 二零二五儲(chǔ)煤場(chǎng)租賃合同(含煤炭?jī)?chǔ)備與風(fēng)險(xiǎn)管理)4篇
- 2025至2030年中國(guó)賦魚康數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)浴用品數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)搖擺玻璃柜門鎖數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)微孔喇叭網(wǎng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)便攜式冷熱箱數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)鋼襯聚四氟乙烯管件市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)氟乙腈市場(chǎng)調(diào)查研究報(bào)告
- 危險(xiǎn)品倉(cāng)儲(chǔ)危險(xiǎn)廢物處置與管理考核試卷
- 湖南省長(zhǎng)沙市2025年新高考適應(yīng)性考試生物學(xué)模擬試題(含答案)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫(kù)安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語(yǔ)考試真題
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 在雙減政策下小學(xué)音樂(lè)社團(tuán)活動(dòng)有效開(kāi)展及策略 論文
- envi二次開(kāi)發(fā)素材包-idl培訓(xùn)
- 2022年上海市初中語(yǔ)文課程終結(jié)性評(píng)價(jià)指南
- 醫(yī)院手術(shù)室醫(yī)院感染管理質(zhì)量督查評(píng)分表
- 心內(nèi)電生理導(dǎo)管及器械
評(píng)論
0/150
提交評(píng)論