版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河南省滎陽市第二高級中學(xué)數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在銳角中,若,則角的大小為()A.30° B.45° C.60° D.75°2.已知向量,,則()A. B. C. D.3.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.84.執(zhí)行如圖所示的程序框圖,令,若,則實數(shù)a的取值范圍是A. B.C. D.5.一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設(shè)豆子不落在線上,下列事件的概率:(1)豆子落在紅色區(qū)域概率為;(2)豆子落在黃色區(qū)域概率為;(3)豆子落在綠色區(qū)域概率為;(4)豆子落在紅色或綠色區(qū)域概率為;(5)豆子落在黃色或綠色區(qū)域概率為.其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個6.已知數(shù)列是公差不為零的等差數(shù)列,是等比數(shù)列,,,則下列說法正確的是()A. B.C. D.與的大小不確定7.已知集合A=-1,A.-1,??0,??18.某學(xué)校禮堂有30排座位,每排有20個座位,一次心理講座時禮堂中坐滿了學(xué)生,會后為了了解有關(guān)情況,留下座位號是15的30名學(xué)生,這里運用的抽樣方法是()A.抽簽法 B.隨機數(shù)法 C.系統(tǒng)抽樣 D.分層抽樣9.已知數(shù)列的前項和為,滿足,則通項公式等于().A. B. C. D.10.若某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列四個命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對任意的實數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)12.已知向量、滿足:,,,則_________.13.?dāng)?shù)列{}的前項和為,若,則{}的前2019項和____.14.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值等于________.15.已知向量,,且,點在圓上,則等于.16.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在正中,,.(1)試用,表示;(2)若,,求.18.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.19.已知各項為正數(shù)的數(shù)列滿足:且.(1)證明:數(shù)列為等差數(shù)列.(2)若,證明:對一切正整數(shù)n,都有20.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.(Ⅰ)求證:PO⊥平面ABCD;(Ⅱ)線段AD上是否存在點,使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.21.在平面直角坐標(biāo)系中,已知.(1)求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
直接利用正弦定理計算得到答案.【題目詳解】根據(jù)正弦定理得到:,故,是銳角三角形,故.故選:.【題目點撥】本題考查了正弦定理解三角形,意在考查學(xué)生的計算能力.2、D【解題分析】
根據(jù)平面向量的數(shù)量積,計算模長即可.【題目詳解】因為向量,,則,,故選:D.【題目點撥】本題考查了平面向量的數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題.3、D【解題分析】
由等比數(shù)列的性質(zhì)求得,再由等差數(shù)列的性質(zhì)可得結(jié)果.【題目詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【題目點撥】本題主要考查等比數(shù)列與等差數(shù)列的下標(biāo)性質(zhì),屬于基礎(chǔ)題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)().4、D【解題分析】該程序的功能是計算并輸出分段函數(shù).當(dāng)時,,解得;當(dāng)時,,解得;當(dāng)時,,無解.綜上,,則實數(shù)a的取值范圍是.故選D.5、B【解題分析】試題分析:方桌共有塊,其中紅色的由塊,黃色的由塊,,綠色的由塊,所以(1)(2)(3)結(jié)論正確,故選擇B.這里表面上看是與面積相關(guān)的幾何概型,其實還是古典概型考點:古典概型的概率計算和事件間的關(guān)系.6、A【解題分析】
設(shè)等比數(shù)列的公比為,結(jié)合題中條件得出且,將、、、用與表示,利用因式分解思想以及基本不等式可得出與的不等關(guān)系,并結(jié)合等差數(shù)列下標(biāo)和性質(zhì)可得出與的大小關(guān)系.【題目詳解】設(shè)等比數(shù)列的公比為,由于等差數(shù)列是公差不為零,則,從而,且,得,,,即,另一方面,由等差數(shù)列的性質(zhì)可得,因此,,故選:A.【題目點撥】本題考查等差數(shù)列和等比數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵在于將等比中的項利用首項和公比表示,并進行因式分解,考查分析問題和解決問題的能力,屬于中等題.7、B【解題分析】
直接利用交集運算得到答案.【題目詳解】因為A=-1,??故答案選B【題目點撥】本題考查了交集運算,屬于簡單題.8、C【解題分析】抽名學(xué)生分了組(每排為一組),每組抽一個,符合系統(tǒng)抽樣的定義故選9、C【解題分析】
代入求得;根據(jù)可證得數(shù)列為等比數(shù)列,從而利用等比數(shù)列通項公式求得結(jié)果.【題目詳解】當(dāng)時,當(dāng)且時,則,即數(shù)列是以為首項,為公比的等比數(shù)列本題正確選項:【題目點撥】本題考查數(shù)列通項公式的求解,關(guān)鍵是能夠利用得到數(shù)列為等比數(shù)列,屬于常規(guī)題型.10、B【解題分析】
先由三視圖判斷該幾何體為底面是直角三角形的直三棱柱,由棱柱的體積公式即可求出結(jié)果.【題目詳解】據(jù)三視圖分析知,該幾何體是底面為直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角邊長分別為1和,三棱柱的高為,所以該幾何體的體積.【題目點撥】本題主要考查幾何體的三視圖,由三視圖求幾何體的體積,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、②③④【解題分析】
①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應(yīng)關(guān)系均一樣.【題目詳解】對①,當(dāng),顯然,但,所以,不符合增函數(shù)的定義,故①錯;對②,當(dāng)時,,所以為的一條對稱軸,當(dāng)取,取時,顯然兩個數(shù)關(guān)于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對.綜上所述,故填:②③④.【題目點撥】本題對三角函數(shù)的定義域、值域、單調(diào)性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應(yīng)用.12、.【解題分析】
將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運算律可得出結(jié)果.【題目詳解】,,,因此,,故答案為.【題目點撥】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.13、1009【解題分析】
根據(jù)周期性,對2019項進行分類計算,可得結(jié)果?!绢}目詳解】解:根據(jù)題意,的值以為循環(huán)周期,=1009故答案為:1009.【題目點撥】本題考查了周期性在數(shù)列中的應(yīng)用,屬于中檔題。14、1【解題分析】
由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【題目詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點睛】解本題首先要能根據(jù)韋達定理判斷出a,b均為正值,當(dāng)他們與-2成等差數(shù)列時,共有6種可能,當(dāng)-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.15、【解題分析】試題分析:因為且在圓上,所以,解得,所以.考點:向量運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).16、【解題分析】
取中點,中點,易得面,再求出到平面的距離,進而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【題目詳解】如圖,取中點,中點,連接.因為,,所以.因為,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因為,所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【題目點撥】本題主要考查了空間中線面垂直的性質(zhì)與運用,同時也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點到面的距離求解,再求出線面的夾角.屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)-2【解題分析】
(1)由,可得,整理可求出答案;(2)用、分別表示和,進而求出即可.【題目詳解】(1)因為,則,所以.(2)當(dāng)時,,因為,所以為邊的三等分點,則,故.【題目點撥】本題考查平面向量的線性運算,考查向量的數(shù)量積,考查學(xué)生的計算能力與推理能力,屬于基礎(chǔ)題.18、(1);(2).【解題分析】
(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【題目詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當(dāng)時,,所以(定值),滿足為等差數(shù)列,②當(dāng)時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因為為等差數(shù)列,所以,即,解得或.①當(dāng)時,滿足,,成等比數(shù)列,②當(dāng)時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【題目點撥】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.19、(1)證明見解析.(2)證明見解析.【解題分析】
(1)根據(jù)所給遞推公式,將式子變形,即可由等差數(shù)列定義證明數(shù)列為等差數(shù)列.(2)根據(jù)數(shù)列為等差數(shù)列,結(jié)合等差數(shù)列通項公式求法求得通項公式,并變形后令.由求得的取值范圍,即可表示出,由不等式性質(zhì)進行放縮,求得后,即可證明不等式成立.【題目詳解】(1)證明:各項為正數(shù)的數(shù)列滿足:則,,同取倒數(shù)可得,所以,由等差數(shù)列定義可知數(shù)列為等差數(shù)列.(2)證明:由(1)可知數(shù)列為等差數(shù)列.,則數(shù)列是以為首項,以為公差的等差數(shù)列.則,令,因為,所以,則,所以,所以,所以由不等式性質(zhì)可知,若,則總成立,因而,所以所以不等式得證.【題目點撥】本題考查了數(shù)列遞推公式的應(yīng)用,由定義證明等差數(shù)列,換元法及放縮法在證明不等式中的應(yīng)用,屬于中檔題.20、(Ⅰ)證明見解析;(Ⅱ).【解題分析】試題分析:(Ⅰ)只需證明,又由面面垂直的性質(zhì)定理知平面;(Ⅱ)連接、,假設(shè)存在點,使得它到平面的距離為,設(shè),由,求得的值即可.試題解析:(Ⅰ)證明:在中,為中點,所以.又側(cè)面底面,平面平面,平面,所以平面.(Ⅱ)連接、假設(shè)存在點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省漢中市寧強縣2023-2024學(xué)年七年級上學(xué)期期末學(xué)業(yè)水平檢測數(shù)學(xué)試卷(含解析)
- 01月08日佛山市東建文華尚領(lǐng)尚域66行政財富公寓項目定位分析
- 《論壇版塊策劃書》課件
- 16.1《赤壁賦》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊-4
- 2025屆云南省文山馬關(guān)實驗高級中學(xué)高三第六次模擬考試語文試卷含解析
- 采購員培訓(xùn)課件教程課程-智庫文檔
- 江蘇省清江市清江中學(xué)2025屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析
- 2025屆福建省廈門市廈門第一中學(xué)高三最后一卷語文試卷含解析
- 2025屆江蘇省徐州市第五中學(xué)高三第四次模擬考試英語試卷含解析
- 【大學(xué)課件】網(wǎng)絡(luò)通信技術(shù)基礎(chǔ)培訓(xùn)教程
- 牙合畸形的早期矯治通用課件
- 四川省資陽市安岳縣2023-2024年九年級上期期末化學(xué)試題
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(上)學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)
- 《甲狀腺危象》課件
- 初中道德與法治差異化作業(yè)實踐探究
- 部編版小學(xué)道德與法治五年級上冊單元復(fù)習(xí)課件(全冊)
- 北京市2022-2023學(xué)年七年級上學(xué)期語文期末試卷(含答案)
- 電纜放線施工方案
- GB/T 43439-2023信息技術(shù)服務(wù)數(shù)字化轉(zhuǎn)型成熟度模型與評估
- 圖書破損或丟失登記表
- 2023-2024年新人教版pep六年級英語上冊試卷全套含答案
評論
0/150
提交評論