版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市泗縣一中2024屆高一數(shù)學第二學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知在R上是奇函數(shù),且滿足,當時,,則()A.-2 B.2 C.-98 D.982.設m>1,在約束條件y≥xA.1,1+2C.(1,3) D.(3,+∞)3.已知向量a=(2,1),a?b=10,A.5 B.10 C.5 D.254.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值可能是()A. B. C. D.5.若,則的坐標是()A. B. C. D.6.設,則比多了()項A. B. C. D.7.已知三條相交于一點的線段兩兩垂直且在同一平面內(nèi),在平面外、平面于,則垂足是的()A.內(nèi)心 B.外心 C.重心 D.垂心8.某公司的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):已知對呈線性相關關系,且回歸方程為,工作人員不慎將表格中的第一個數(shù)據(jù)遺失,該數(shù)據(jù)為()A.28 B.30 C.32 D.359.《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術》中弧田面積的經(jīng)驗公式計算所得弧田面積為()A. B. C. D.10.一個正方體內(nèi)接于一個球,過球心作一個截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③二、填空題:本大題共6小題,每小題5分,共30分。11.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.12.函數(shù)的最小正周期是______.13.已知向量,則的單位向量的坐標為_______.14.在賽季季后賽中,當一個球隊進行完場比賽被淘汰后,某個籃球愛好者對該隊的7場比賽得分情況進行統(tǒng)計,如表:場次得分104為了對這個隊的情況進行分析,此人設計計算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.15.無限循環(huán)小數(shù)化成最簡分數(shù)為________16.函數(shù)的最小正周期為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,丄平面,,,,,.(1)證明丄;(2)求二面角的正弦值;(3)設為棱上的點,滿足異面直線與所成的角為,求的長.18.已知.(1)求的值:(2)求的值.19.已知余切函數(shù).(1)請寫出余切函數(shù)的奇偶性,最小正周期,單調區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調遞減.20.如圖,四面體中,,,為的中點.(1)證明:;(2)已知是邊長為2正三角形.(Ⅰ)若為棱的中點,求的大小;(Ⅱ)若為線段上的點,且,求四面體的體積的最大值.21.某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
由在R上是奇函數(shù)且周期為4可得,即可算出答案【題目詳解】因為在R上是奇函數(shù),且滿足所以因為當時,所以故選:A【題目點撥】本題考查的是函數(shù)的奇偶性和周期性,較簡單.2、A【解題分析】試題分析:∵,故直線與直線交于點,目標函數(shù)對應的直線與直線垂直,且在點,取得最大值,其關系如圖所示:即,解得,又∵,解得,選:A.考點:簡單線性規(guī)劃的應用.【方法點睛】本題考查的知識點是簡單線性規(guī)劃的應用,我們可以判斷直線的傾斜角位于區(qū)間上,由此我們不難判斷出滿足約束條件的平面區(qū)域的形狀,其中根據(jù)平面直線方程判斷出目標函數(shù)對應的直線與直線垂直,且在點取得最大值,并由此構造出關于的不等式組是解答本題的關鍵.3、C【解題分析】
將|a+b4、D【解題分析】
求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【題目詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點,則有解,解得:當當當結合四個選項可以分析,實數(shù)的取值可能是.故選:D【題目點撥】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質,求出函數(shù)零點再討論其所在區(qū)間列不等式求解.5、C【解題分析】
,.故選C.6、C【解題分析】
可知中共有項,然后將中的項數(shù)減去中的項數(shù)即可得出答案.【題目詳解】,則中共有項,所以,比多了的項數(shù)為.故選:C.【題目點撥】本題考查數(shù)學歸納法的應用,解題的關鍵就是計算出等式中的項數(shù),考查分析問題和解決問題的能力,屬于中等題.7、D【解題分析】
根據(jù)題意,結合線線垂直推證線面垂直,以及根據(jù)線面垂直推證線線垂直,即可求解?!绢}目詳解】連接BH,延長BH與AC相交于E,連接AH,延長AH交BC于D,作圖如下:因為,故平面PBC,又平面PBC,故;因為平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE與AD交于點H,故H點為的垂心.故選:D.【題目點撥】本題考查線線垂直與線面垂直之間的相互轉化,屬綜合中檔題.8、B【解題分析】
由回歸方程經(jīng)過樣本中心點,求得樣本平均數(shù)后代入回歸方程即可求得第一組的數(shù)值.【題目詳解】設第一組數(shù)據(jù)為,則,,根據(jù)回歸方程經(jīng)過樣本中心點,代入回歸方程,可得,解得,故選:B.【題目點撥】本題考查了回歸方程的性質及簡單應用,屬于基礎題.9、C【解題分析】
首先根據(jù)圖形計算出矢,弦,再帶入弧田面積公式即可.【題目詳解】如圖所示:因為,,為等邊三角形.所以,矢,弦..故選:C【題目點撥】本題主要考查扇形面積公式,同時考查學生對題意的理解,屬于中檔題.10、A【解題分析】
分別當截面平行于正方體的一個面時,當截面過正方體的兩條相交的體對角線時,當截面既不過體對角線也不平行于任一側面時,進行判定,即可求解.【題目詳解】由題意,當截面平行于正方體的一個面時得③;當截面過正方體的兩條相交的體對角線時得④;當截面既不過正方體體對角線也不平行于任一側面時可能得①;無論如何都不能得②.故選A.【題目點撥】本題主要考查了正方體與球的組合體的截面問題,其中解答中熟記空間幾何體的結構特征是解答此類問題的關鍵,著重考查了空間想象能力,以及推理能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【題目詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【題目點撥】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學生的計算能力,屬于難題.12、【解題分析】
由二倍角的余弦函數(shù)公式化簡解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【題目詳解】.由周期公式可得:.故答案為【題目點撥】本題主要考查了二倍角的余弦函數(shù)公式的應用,考查了三角函數(shù)的周期性及其求法,屬于基本知識的考查.13、.【解題分析】
由結論“與方向相同的單位向量為”可求出的坐標.【題目詳解】,所以,,故答案為.【題目點撥】本題考查單位向量坐標的計算,考查共線向量的坐標運算,充分利用共線單位向量的結論可簡化計算,考查運算求解能力,屬于基礎題.14、【解題分析】
根據(jù)題意,模擬程序框圖的運行過程,得出該程序運行的是求數(shù)據(jù)的標準差,即可求得答案.【題目詳解】模擬程序框圖的運行過程知,該程序運行的結果是求這個數(shù)據(jù)的標準差這組數(shù)據(jù)的平均數(shù)是方差是:標準差是故答案為:.【題目點撥】本題主要考查了根據(jù)程序框圖求輸出結果,解題關鍵是掌握程序框圖基礎知識和計算數(shù)據(jù)方差的解法,考查了分析能力和計算能力,屬于中檔題.15、【解題分析】
利用無窮等比數(shù)列求和的方法即可.【題目詳解】.故答案為:【題目點撥】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎題型.16、【解題分析】
根據(jù)的最小正周期判斷即可.【題目詳解】因為的最小正周期均為,故的最小正周期為.故答案為:【題目點撥】本題主要考查了正切余切函數(shù)的周期,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2);(3)【解題分析】
(1)要證異面直線垂直,即證線面垂直,本題需證平面(2)作于點,連接.為二面角的平面角,在中解出即可.(3)過點作的平行線與線段相交,交點為,連接,;計算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的長【題目詳解】(1)證明:由平面,可得,又由,,故平面.又平面,所以.(2)如圖,作于點,連接.由,,可得平面.因此,從而為二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值為.(3)因為,故過點作的平行線必與線段相交,設交點為,連接,;∴或其補角為異面直線與所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,設;在中,;在中,;∴在中,,∴;;解得;∴.【題目點撥】本題主要考查線線垂直、二面角的平面角、異面直線所成角的.屬于中檔題.18、(1);(2)【解題分析】
(1)利用平方關系、誘導公式以及誘導公式即可求解;(2)利用輔助角公式以及二倍角的正弦公式化簡即可求值.【題目詳解】(1)因為且所以;(2).【題目點撥】本題主要考查了三角函數(shù)的化簡與求值,關鍵是利用誘導公式、同角三角函數(shù)的基本關系以及輔助角公式來求解,屬于中檔題.19、(1)奇函數(shù);周期為,單調遞減速區(qū)間:(2)證明見解析【解題分析】
(1)直接利用函數(shù)的性質寫出結果.(2)利用單調性的定義和三角函數(shù)關系式的變換求出結果.【題目詳解】(1)奇函數(shù);周期為,單調遞減區(qū)間:(2)任取,,,有因為,所以,于是,,從而,.因此余切函數(shù)在區(qū)間上單調遞減.【題目點撥】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,函數(shù)關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.20、(1)證明見解析;(2)(Ⅰ);(Ⅱ)【解題分析】
(1)取中點,連接,通過證明,證得平面,由此證得.(2)(I)通過證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個定理及其逆定理,證得.(II)利用求得四面體的體積的表達式,結合基本不等式求得四面體的體積的最大值.【題目詳解】(1)取的中點,所以,所以.又因為,所以,又,所以面,所以.(2)(Ⅰ)由題意得,在正三角形中,,又因為,且,所以面,所以.∵為棱的中點,∴,在中,為的中點,.∴(Ⅱ),四面體的體積,又因為,即,所以等號當且僅當時成立,此時.故所求的四面體的體積的最大值為.【題目點撥】本小題主要考查線線垂直的證明,考查線面垂直的證明,考查直角三角形的判定,考查三棱錐體積的最大值的求法,考查基本不等式的運用,考查空間想象能力和邏輯推理能力,屬于中檔題.21、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時又能使用料總面積最?。窘忸}分析】
本題可先將甲種薄鋼板設為x張,乙種薄鋼板設為y張,然后根據(jù)題意,得出兩個不等式關系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規(guī)劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結果.【題目詳解】設甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產(chǎn)品外殼3x+6y個,B種產(chǎn)品外殼5x+6y個,由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊市滕州市2024-2025學年七年級上學期1月期末考試道德與法治試卷(含答案)
- 江蘇省宿遷市2024-2025學年高三1月第一次調研測試化學試題(含答案)
- 09年1月中英合作財務管理真題及答案
- 福建省南平市劍津中學2020-2021學年高三語文模擬試題含解析
- 2025年度保密協(xié)議模板:涉密數(shù)據(jù)存儲服務合同3篇
- 2024網(wǎng)絡游戲內(nèi)容安全與防沉迷系統(tǒng)咨詢合同
- 2024版單位汽車租賃合同范本
- 2024軟件著作權登記與反侵權調查專業(yè)服務合同3篇
- 2025年度農(nóng)產(chǎn)品加工合作合同3篇
- 2024訂車協(xié)議范本
- 工程材料(構配件)設備清單及自檢結果表
- 滬教版 三年級數(shù)學上冊 圖形與幾何習題2
- 大使涂料(安徽)有限公司年產(chǎn)6萬噸科技型工業(yè)涂料、水性環(huán)保涂料生產(chǎn)項目環(huán)境影響報告書
- 利樂包和康美包的比較
- 法院執(zhí)行庭長供職報告1400字
- 推動架機械加工工序卡片
- 重慶市綦江區(qū)篆塘鎮(zhèn)白坪村建筑用砂巖礦采礦權評估報告
- 甘肅社火100首歌詞
- 行政查房情況記錄表
- GB/T 2315-2000電力金具標稱破壞載荷系列及連接型式尺寸
- 腹主動脈瘤的護理查房
評論
0/150
提交評論