版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆重慶市高高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若且,則下列不等式成立的是()A. B. C. D.2.在平面直角坐標(biāo)系中,為坐標(biāo)原點,為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的坐標(biāo)為()A. B. C. D.3.2021年某省新高考將實行“”模式,即語文、數(shù)學(xué)、外語必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共有12種選課模式.某同學(xué)已選了物理,記事件:“他選擇政治和地理”,事件:“他選擇化學(xué)和地理”,則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件4.已知向量,,若,則的值為()A. B.1 C. D.5.下列命題中正確的是()A. B.C. D.6.直線經(jīng)過點和,則直線的傾斜角為()A. B. C. D.7.已知,且,則實數(shù)的值為()A.2 B. C.3 D.8.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.69.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C10.在正項等比數(shù)列中,,為方程的兩根,則()A.9 B.27 C.64 D.81二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)的圖象上每一點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變;再向右平移個單位長度得到的圖象,則_________.12.已知數(shù)列滿足且,則____________.13.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.14.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________15.已知,則的值是______.16.已知變量和線性相關(guān),其一組觀測數(shù)據(jù)為,由最小二乘法求得回歸直線方程為.若已知,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面是正方形,底面,點是的中點,點是和的交點.(1)證明:平面;(2)求三棱錐的體積.18.已知數(shù)列滿足,,設(shè).(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項公式.19.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)為數(shù)列的前n項和,,求數(shù)列的前n項和.20.已知函數(shù),且的解集為.(1)求函數(shù)的解析式;(2)解關(guān)于的不等式,;(3)設(shè),若對于任意的都有,求的最小值.21.在△ABC中,角A,B,C的對邊分別為a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面積;(2)若m=,A=2B,a=,求b.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
利用作差法對每一個選項逐一判斷分析.【題目詳解】選項A,所以a≥b,所以該選項錯誤;選項B,,符合不能確定,所以該選項錯誤;選項C,,符合不能確定,所以該選項錯誤;選項D,,所以,所以該選項正確.故選D【題目點撥】本題主要考查實數(shù)大小的比較,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.2、C【解題分析】
由題意利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得點的坐標(biāo).【題目詳解】為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的橫坐標(biāo)為,點的縱坐標(biāo)為,故點的坐標(biāo)為.故選C.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,考查基本的運算求解能力.3、A【解題分析】
事件與事件不能同時發(fā)生,是互斥事件,他還可以選擇化學(xué)和政治,不是對立事件,得到答案.【題目詳解】事件與事件不能同時發(fā)生,是互斥事件他還可以選擇化學(xué)和政治,不是對立事件故答案選A【題目點撥】本題考查了互斥事件和對立事件,意在考查學(xué)生對于互斥事件和對立事件的理解.4、B【解題分析】
直接利用向量的數(shù)量積列出方程求解即可.【題目詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【題目點撥】本題考查向量的數(shù)量積的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.5、D【解題分析】
根據(jù)向量的加減法的幾何意義以及向量數(shù)乘的定義即可判斷.【題目詳解】,,,,故選D.【題目點撥】本題主要考查向量的加減法的幾何意義以及向量數(shù)乘的定義的應(yīng)用.6、D【解題分析】
算出直線的斜率后可得其傾斜角.【題目詳解】設(shè)直線的斜率為,且傾斜角為,則,根據(jù),而,故,故選D.【題目點撥】本題考查直線傾斜角的計算,屬于基礎(chǔ)題.7、D【解題分析】
根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【題目詳解】由題意又解得故選:【題目點撥】本題考查兩角和與差的正弦公式,屬于基礎(chǔ)題.8、C【解題分析】
由題意作出不等式組所表示的平面區(qū)域,將化為,相當(dāng)于直線的縱截距,由幾何意義可得結(jié)果.【題目詳解】由題意作出其平面區(qū)域,令,化為,相當(dāng)于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【題目點撥】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.9、B【解題分析】
由集合A,B,C,求出B與C的并集,判斷A與C的包含關(guān)系,以及A,B,C三者之間的關(guān)系即可.【題目詳解】由題BA,∵A={第一象限角},B={銳角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,則B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故選:B.【題目點撥】此題考查了集合間的基本關(guān)系及運算,熟練掌握象限角,銳角,以及小于90°的角表示的意義是解本題的關(guān)鍵,是易錯題10、B【解題分析】
由韋達定理得,再利用等比數(shù)列的性質(zhì)求得結(jié)果.【題目詳解】由已知得是正項等比數(shù)列本題正確選項:【題目點撥】本題考查等比數(shù)列的三項之積的求法,關(guān)鍵是對等比數(shù)列的性質(zhì)進行合理運用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由條件根據(jù)函數(shù)的圖象變換規(guī)律,,可得的解析式,從而求得的值.【題目詳解】將函數(shù)向左平移個單位長度可得的圖象;保持縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的倍可得的圖象,故,所以.【題目點撥】本題主要考查函數(shù))的圖象變換規(guī)律,屬于中檔題.12、【解題分析】
由題得為等差數(shù)列,得,則可求【題目詳解】由題:為等差數(shù)列且首項為2,則,所以.故答案為:2550【題目點撥】本題考查等差數(shù)列的定義,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題13、【解題分析】
利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【題目詳解】設(shè)各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【題目點撥】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.14、【解題分析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【題目詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【題目點撥】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.15、【解題分析】
根據(jù)兩角差的正切公式即可求解【題目詳解】故答案為:【題目點撥】本題考查兩角差的正切公式的用法,屬于基礎(chǔ)題16、355【解題分析】
根據(jù)回歸直線必過樣本點的中心,根據(jù)橫坐標(biāo)結(jié)合回歸方程求出縱坐標(biāo)即可得解.【題目詳解】由題:,回歸直線方程為,所以,.故答案為:355【題目點撥】此題考查根據(jù)回歸直線方程求樣本點的中心的縱坐標(biāo),關(guān)鍵在于掌握回歸直線必過樣本點的中心,根據(jù)平均數(shù)求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】
(1)在中,利用中位線性質(zhì)得到,證明平面.(2)直接利用體積公式得到答案.【題目詳解】在中,點是的中點,底面是正方形點為中點根據(jù)中位線性質(zhì)得到,平面,故平面.(2)底面【題目點撥】本題考查了線面平行,三棱錐體積,意在考查學(xué)生的計算能力和空間想象能力.18、(1),,;(2)證明見詳解,,.【解題分析】
(1)根據(jù)遞推公式,賦值求解即可;(2)利用定義,求證為定值即可,由數(shù)列通項公式即可求得和.【題目詳解】(1)由條件可得,將代入得,,而,所以.將代入得,所以.從而,,.(2)由條件可得,即,,又,所以是首項為1,公比為3的等比數(shù)列,.因為,所以.【題目點撥】本題考查利用遞推關(guān)系求數(shù)列某項的值,以及利用數(shù)列定義證明等比數(shù)列,及求通項公式,是數(shù)列綜合基礎(chǔ)題.19、(1),n∈N+;(2)【解題分析】
(1)設(shè)公比為q,q>0,運用等比數(shù)列的通項公式,解方程即可得到所求;(2),再由數(shù)列的裂項相消求和,計算可得所求和.【題目詳解】(1)數(shù)列是各項均為正數(shù)的等比數(shù)列,設(shè)公比為q,q>0,,.即,,解得,可得,n∈N+;(2),前n項和,由(1)可得a1=2,,即有.【題目點撥】本題考查數(shù)列的通項和求和,數(shù)列求和的常用方法有:分組求和,錯位相減求和,倒序相加求和等,本題解題關(guān)鍵是裂項的形式,本題屬于中等題.20、(1)(2)答案不唯一,具體見解析(3)1【解題分析】
(1)根據(jù)韋達定理即可。(2)分別對三種情況進行討論。(3)帶入,分別對時三種情況討論?!绢}目詳解】(1)的解集為可得1,2是方程的兩根,則,(2)時,時,時,(3),為上的奇函數(shù)當(dāng)時,當(dāng)時,,則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且時,,在時,取得最大值,即;當(dāng)時,,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,且時,,在時,取得最小值,即;對于任意的都有則等價于或()則的最小值為1【題目點撥】本題主要考查了含參數(shù)的一元二次不等式,以及絕對值不等式,在解決含參數(shù)的不等式時首先要對參數(shù)進行討論。本題屬于難題。21、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 魚鱗坑施工方案
- 二零二五年度設(shè)備監(jiān)造合同范本使用說明9篇
- 陜西文旅照明施工方案
- 二零二五版生態(tài)小區(qū)房屋買賣合同書3篇
- 二零二五個人房產(chǎn)買賣合同范本
- 水渠工程項目承包合同
- 二零二五年度城市更新個人工程承包合同范本2篇
- 二零二五年度建筑工程行紀(jì)服務(wù)合同范本3篇
- 試用期簡單合同范本
- 勞務(wù)公司服務(wù)合同
- 《景觀設(shè)計》課件
- 騰訊人力資源管理
- 2024年安徽省高校分類對口招生考試數(shù)學(xué)試卷真題
- 會所股東合作協(xié)議書范文范本
- 人教版(2024)七年級上冊英語期中復(fù)習(xí)單項選擇100題(含答案)
- 公婆贈予兒媳婦的房產(chǎn)協(xié)議書(2篇)
- 矽塵對神經(jīng)系統(tǒng)的影響研究
- 海南省汽車租賃合同
- 保險投訴處理流程培訓(xùn)
- JJG 707-2014扭矩扳子行業(yè)標(biāo)準(zhǔn)
- 供貨保障措施及應(yīng)急方案
評論
0/150
提交評論