![2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M02/19/26/wKhkGWWiwzOAbXbLAAHYW-aBeoU440.jpg)
![2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M02/19/26/wKhkGWWiwzOAbXbLAAHYW-aBeoU4402.jpg)
![2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M02/19/26/wKhkGWWiwzOAbXbLAAHYW-aBeoU4403.jpg)
![2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M02/19/26/wKhkGWWiwzOAbXbLAAHYW-aBeoU4404.jpg)
![2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M02/19/26/wKhkGWWiwzOAbXbLAAHYW-aBeoU4405.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆博雅聞道高一數(shù)學第二學期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某社區(qū)義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統(tǒng)抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.42.為研究需要,統(tǒng)計了兩個變量x,y的數(shù)據(jù)·情況如下表:其中數(shù)據(jù)x1、x2、x3…xn,和數(shù)據(jù)y1、y2、y3,…yn的平均數(shù)分別為和,并且計算相關(guān)系數(shù)r=-1.8,回歸方程為,有如下幾個結(jié)論:①點(,)必在回歸直線上,即=b+;②變量x,y的相關(guān)性強;③當x=x1,則必有;④b<1.其中正確的結(jié)論個數(shù)為A.1 B.2 C.3 D.43.某三棱柱的底面是邊長為2的正三角形,高為6,則該三棱柱的體積為A. B. C. D.4.如圖所示是的圖象的一段,它的一個解析式為()A. B.C. D.5.某實驗中學共有職工150人,其中高級職稱的職工15人,中級職稱的職工45人,一般職員90人,現(xiàn)采用分層抽樣抽取容量為30的樣本,則抽取的高級職稱、中級職稱、一般職員的人數(shù)分別為A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、166.已知函數(shù)若關(guān)于的方程恰有兩個互異的實數(shù)解,則的取值范圍為A. B. C. D.7.已知點,和向量,若,則實數(shù)的值為()A. B. C. D.8.已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16 B.14 C.12 D.109.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,測得∠BCD=15°,∠BDC=30°,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于()A. B. C. D.10.在中,若為等邊三角形(兩點在兩側(cè)),則當四邊形的面積最大時,()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知當時,函數(shù)(且)取得最大值,則時,的值為__________.12.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.13.下列五個正方體圖形中,是正方體的一條對角線,點M,N,P分別為其所在棱的中點,求能得出⊥面MNP的圖形的序號(寫出所有符合要求的圖形序號)______14.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________15.已知,,兩圓和只有一條公切線,則的最小值為________16.數(shù)列滿足:(且為常數(shù)),,當時,則數(shù)列的前項的和為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.18.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.19.某商品監(jiān)督部門對某廠家生產(chǎn)的產(chǎn)品進行抽查檢測估分,監(jiān)督部門在所有產(chǎn)品中隨機抽取了部分產(chǎn)品檢測評分,得到如圖所示的分數(shù)頻率分布直方圖:(1)根據(jù)頻率分布直方圖,估計該廠家產(chǎn)品檢測評分的平均值;(2)該廠決定從評分值超過90的產(chǎn)品中取出5件產(chǎn)品,選擇2件參加優(yōu)質(zhì)產(chǎn)品評選,若已知5件產(chǎn)品中有3件來自車間,有2件產(chǎn)品來自車間,試求這2件產(chǎn)品中含車間產(chǎn)品的概率.20.在中,的對邊分別為,已知.(1)求的值;(2)若的面積為,,求的值.21.在中,內(nèi)角所對的邊分別為.已知,.(I)求的值;(II)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
求出樣本間隔,結(jié)合莖葉圖求出年齡不超過55歲的有8人,然后進行計算即可.【題目詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數(shù)為人.故選:.【題目點撥】本題主要考查莖葉圖以及系統(tǒng)抽樣的應用,求出樣本間隔是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解題分析】
根據(jù)回歸方程的性質(zhì)和相關(guān)系數(shù)的性質(zhì)求解.【題目詳解】回歸直線經(jīng)過樣本中心點,故①正確;變量的相關(guān)系數(shù)的絕對值越接近與1,則兩個變量的相關(guān)性越強,故②正確;根據(jù)回歸方程的性質(zhì),當時,不一定有,故③錯誤;由相關(guān)系數(shù)知負相關(guān),所以,故④正確;故選C.【題目點撥】本題考查回歸直線和相關(guān)系數(shù),注意根據(jù)回歸方程得出的是估計值不是準確值.3、C【解題分析】
計算結(jié)果.【題目詳解】因為底面是邊長為2的正三角形,所以底面的面積為,則該三棱柱的體積為.【題目點撥】本題考查了棱柱的體積公式,屬于簡單題型.4、D【解題分析】
根據(jù)函數(shù)的圖象,得出振幅與周期,從而求出與的值.【題目詳解】根據(jù)函數(shù)的圖象知,振幅,周期,即,解得;所以時,,;解得,,所以函數(shù)的一個解析式為.故答案為D.【題目點撥】本題考查了函數(shù)的圖象與性質(zhì)的應用問題,考查三角函數(shù)的解析式的求法,屬于基礎(chǔ)題.5、B【解題分析】試題分析:高級職稱應抽?。恢屑壜毞Q應抽?。灰话懵殕T應抽?。键c:分層抽樣點評:本題主要考查分層抽樣的定義與步驟.分層抽樣:當總體是由差異明顯的幾個部分組成的,可將總體按差異分成幾個部分(層),再按各部分在總體中所占比例進行抽樣.6、D【解題分析】
畫出圖象及直線,借助圖象分析.【題目詳解】如圖,當直線位于點及其上方且位于點及其下方,或者直線與曲線相切在第一象限時符合要求.即,即,或者,得,,即,得,所以的取值范圍是.故選D.【題目點撥】根據(jù)方程實根個數(shù)確定參數(shù)范圍,常把其轉(zhuǎn)化為曲線交點個數(shù),特別是其中一條為直線時常用此法.7、B【解題分析】
先求出,再利用共線向量的坐標表示求實數(shù)的值.【題目詳解】由題得,因為,所以.故選:B【題目點撥】本題主要考查向量的坐標運算和向量共線的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、A【解題分析】設(shè),直線的方程為,聯(lián)立方程,得,∴,同理直線與拋物線的交點滿足,由拋物線定義可知,當且僅當(或)時,取等號.點睛:對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉(zhuǎn)化到準線上,另外,直線與拋物線聯(lián)立,求判別式,利用根與系數(shù)的關(guān)系是通法,需要重點掌握.考查最值問題時要能想到用函數(shù)方法和基本不等式進行解決.此題還可以利用弦長的傾斜角表示,設(shè)直線的傾斜角為,則,則,所以.9、D【解題分析】
在三角形中,利用正弦定理求得,然后在三角形中求得.【題目詳解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故選:D【題目點撥】本小題主要考查正弦定理解三角形,考查解直角三角形,屬于基礎(chǔ)題.10、A【解題分析】
求出三角形的面積,求出四邊形的面積,運用三角函數(shù)的恒等變換和正弦函數(shù)的值域,求出滿足條件的角的值即可.【題目詳解】設(shè),,,是正三角形,,由余弦定理得:,,時,四邊形的面積最大,此時.故選A.【題目點撥】本題考查余弦定理和三角形的面積公式,考查兩角的和差公式和正弦函數(shù)的值域,考查化簡運算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
先將函數(shù)的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關(guān)系,結(jié)合誘導公式以及求出的值.【題目詳解】,其中,當時,函數(shù)取得最大值,則,,所以,,解得,故答案為.【題目點撥】本題考查三角函數(shù)最值,解題時首先應該利用降冪公式、和差角公式進行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關(guān)系,結(jié)合誘導公式進行求解,考查計算能力,屬于中等題.12、【解題分析】
根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【題目詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【題目點撥】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.13、①④⑤【解題分析】為了得到本題答案,必須對5個圖形逐一進行判別.對于給定的正方體,l位置固定,截面MNP變動,l與面MNP是否垂直,可從正、反兩方面進行判斷.在MN、NP、MP三條線中,若有一條不垂直l,則可斷定l與面MNP不垂直;若有兩條與l都垂直,則可斷定l⊥面MNP;若有l(wèi)的垂面∥面MNP,也可得l⊥面MNP.解法1作正方體ABCD-A1B1C1D1如附圖,與題設(shè)圖形對比討論.在附圖中,三個截面BA1D、EFGHKR和CB1D1都是對角線l(即AC1)的垂面.對比圖①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.對比圖②,由MN與面CB1D1相交,而過交點且與l垂直的直線都應在面CBlDl內(nèi),所以MN不垂直于l,從而l不垂直于面MNP.對比圖③,由MP與面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.對比圖④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.對比圖⑤,面MNP與面EFGHKR重合,故l⊥面MNP.綜合得本題的答案為①④⑤.解法2如果記正方體對角線l所在的對角截面為.各圖可討論如下:在圖①中,MN,NP在平面上的射影為同一直線,且與l垂直,故l⊥面MNP.事實上,還可這樣考慮:l在上底面的射影是MP的垂線,故l⊥MP;l在左側(cè)面的射影是MN的垂線,故l⊥MN,從而l⊥面MNP.在圖②中,由MP⊥面,可證明MN在平面上的射影不是l的垂線,故l不垂直于MN.從而l不垂直于面MNP.在圖③中,點M在上的射影是l的中點,點P在上的射影是上底面的內(nèi)點,知MP在上的射影不是l的垂線,得l不垂直于面MNP.在圖④中,平面垂直平分線段MN,故l⊥MN.又l在左側(cè)面的射影(即側(cè)面正方形的一條對角線)與MP垂直,從而l⊥MP,故l⊥面MNP.在圖⑤中,點N在平面上的射影是對角線l的中點,點M、P在平面上的射影分別是上、下底面對角線的4分點,三個射影同在一條直線上,且l與這一直線垂直.從而l⊥面MNP.至此,得①④⑤為本題答案.14、【解題分析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【題目詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【題目點撥】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學生的劃歸能力,計算能力和分析能力.15、9【解題分析】
兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個等式,結(jié)合這個等式,可以求出的最小值.【題目詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當且僅當取等號),因此的最小值為9.【題目點撥】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應用,考查了數(shù)學運算能力.16、【解題分析】
直接利用分組法和分類討論思想求出數(shù)列的和.【題目詳解】數(shù)列滿足:(且為常數(shù)),,當時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【題目點撥】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解題分析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質(zhì)的綜合應用;2.等比數(shù)列性質(zhì)的綜合應用;1.數(shù)列求和.18、證明見解析【解題分析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【題目詳解】證明:因為SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC內(nèi)的兩相交線,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC內(nèi)兩相交線,所以AD⊥面SBC.【題目點撥】本題考查了線面垂直的證明與性質(zhì),屬于基礎(chǔ)題.19、(1);(2).【解題分析】
(1)利用平均數(shù)=每個小矩形面積小矩形底邊中點橫坐標之和,即可求解.(2)設(shè)這5件產(chǎn)品分別為,其中1,2為車間生產(chǎn)的產(chǎn)品,利用列舉法求出基本事件的個數(shù),再利用古典概型的概率公式即可求解.【題目詳解】解:(1)依題意,該廠產(chǎn)品檢測的平均值.(2)設(shè)這5件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年石家莊貨運從業(yè)資格證模擬考試系統(tǒng)
- 服務延期合同(2篇)
- 2025年四川水利職業(yè)技術(shù)學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025至2031年中國機場驅(qū)鳥車行業(yè)投資前景及策略咨詢研究報告
- 教育科技行業(yè)人才需求預測-深度研究
- 創(chuàng)新創(chuàng)業(yè)教育體系構(gòu)建-深度研究
- 2025年度裝合同終止協(xié)議書:綠色建材應用項目合同終止協(xié)議書
- 二零二五年度室內(nèi)外裝修一體化合同終止及后續(xù)管理協(xié)議
- 2025年度鋼結(jié)構(gòu)拆除施工安全生產(chǎn)責任保險合同
- 2025年度跨境電商平臺終止合作解除合同協(xié)議書
- 2023年四川省公務員錄用考試《行測》真題卷及答案解析
- 2025年高考物理復習壓軸題:電磁感應綜合問題(原卷版)
- 雨棚鋼結(jié)構(gòu)施工組織設(shè)計正式版
- 2024尼爾森IQ中國本土快消企業(yè)調(diào)研報告
- 2024年印度辣椒行業(yè)狀況及未來發(fā)展趨勢報告
- 鑄鋁焊接工藝
- 《社區(qū)康復》課件-第六章 骨關(guān)節(jié)疾病、損傷患者的社區(qū)康復實踐
- 2024年湖南省公務員考試行政職業(yè)能力測驗真題
- 攀巖運動之繩結(jié)技巧課程
- 防打架毆斗安全教育課件
- 采購行業(yè)的swot分析
評論
0/150
提交評論