版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省大連市普蘭店市第六中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在[30,40)一組的概率為12.已知直線過點且與直線垂直,則該直線方程為()A. B.C. D.3.設(shè)等比數(shù)列的前項和為,且,則()A.255 B.375 C.250 D.2004.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把100個面包分給五個人,使每個人所得成等差數(shù)列,最大的三份之和的是最小的兩份之和,則最小的一份的量是()A. B. C. D.5.若tan()=2,則sin2α=()A. B. C. D.6.若,則()A. B. C. D.7.將函數(shù)y=sinx-πA.y=sin1C.y=sin18.已知向量,且,則的值為()A.1 B.3 C.1或3 D.49.邊長為2的正方形內(nèi)有一封閉曲線圍成的陰影區(qū)域.向正方形中隨機地撒200粒芝麻,大約有80粒落在陰影區(qū)域內(nèi),則此陰影區(qū)域的面積約為()A. B. C. D.10.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域為_________.12.下列結(jié)論中:①②函數(shù)的圖像關(guān)于點對稱③函數(shù)的圖像的一條對稱軸為④其中正確的結(jié)論序號為______.13.在正項等比數(shù)列中,,,則公比________.14.等比數(shù)列中,,則公比____________.15.等差數(shù)列,的前項和分別為,,且,則______.16.若點為圓的弦的中點,則弦所在的直線的方程為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)18.已知圓的圓心在線段上,圓經(jīng)過點,且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點,當(dāng)最小時,求直線的方程及的最小值.19.在平面直角坐標(biāo)中,圓與圓相交與兩點.(I)求線段的長.(II)記圓與軸正半軸交于點,點在圓C上滑動,求面積最大時的直線的方程.20.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項滿足.(1)求通項公式;(2)若是等比數(shù)列的前項和,記,試用等比數(shù)列求和公式化簡(用含的式子表示)21.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)當(dāng)時,求的最大值、最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
根據(jù)頻率分布直方圖逐一計算分析.【題目詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【題目點撥】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率2、A【解題分析】
根據(jù)垂直關(guān)系求出直線斜率為,再由點斜式寫出直線?!绢}目詳解】由直線與直線垂直,可知直線斜率為,再由點斜式可知直線為:即.故選A.【題目點撥】本題考查兩直線垂直,屬于基礎(chǔ)題。3、A【解題分析】
由等比數(shù)列的性質(zhì),仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【題目詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【題目點撥】本題考查等比數(shù)列前n項和的性質(zhì),這道題也可以先由求出數(shù)列的首項和公比q,再由前n項和公式直接得。4、D【解題分析】
由題意可得中間部分的為20個面包,設(shè)最小的一份為,公差為,可得到和的方程,即可求解.【題目詳解】由題意可得中間的那份為20個面包,設(shè)最小的一份為,公差為,由題意可得,解得,故選D.【題目點撥】本題主要考查了等差數(shù)列的通項公式及其應(yīng)用,其中根據(jù)題意設(shè)最小的一份為,公差為,列出關(guān)于和的方程是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、B【解題分析】
由兩角差的正切得tan,化sin2α為tan的齊次式求解【題目詳解】tan()=2,則則sin2α=故選:B【題目點撥】本題考查兩角差的正切公式,考查二倍角公式及齊次式求值,意在考查公式的靈活運用,是基礎(chǔ)題6、A【解題分析】試題分析:,故選A.考點:兩角和與差的正切公式.7、C【解題分析】
將函數(shù)y=sin(x-π3)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到y(tǒng)=sin(12x-π3),再向左平移π3個單位得到的解析式為y=sin(12(x+π3)-8、B【解題分析】
先求出,再利用向量垂直的坐標(biāo)表示得到關(guān)于的方程,從而求出.【題目詳解】因為,所以,因為,則,解得所以答案選B.【題目點撥】本題主要考查了平面向量的坐標(biāo)運算,以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.9、B【解題分析】
依題意得,豆子落在陰影區(qū)域內(nèi)的概率等于陰影部分面積與正方形面積之比,即可求出結(jié)果.【題目詳解】設(shè)陰影區(qū)域的面積為,由題意可得,則.故選:B.【題目點撥】本題考查隨機模擬實驗,根據(jù)幾何概型的意義進行模擬實驗計算陰影部分面積,關(guān)鍵在于掌握幾何概型的計算公式.10、B【解題分析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列出不等式求解集即可.【題目詳解】對數(shù)函數(shù)f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定義域為(1,+∞).故答案為:(1,+∞).【題目點撥】本題考查了求對數(shù)函數(shù)的定義域問題,是基礎(chǔ)題.12、①③④【解題分析】
由兩角和的正切公式的變形,化簡可得所求值,可判斷①正確;由正切函數(shù)的對稱中心可判斷②錯誤;由余弦函數(shù)的對稱軸特點可判斷③正確;由同角三角函數(shù)基本關(guān)系式和輔助角公式、二倍角公式和誘導(dǎo)公式,化簡可得所求值,可判斷④正確.【題目詳解】①,故①正確;②函數(shù)的對稱中心為,,則圖象不關(guān)于點對稱,故②錯誤;③函數(shù),由為最小值,可得圖象的一條對稱軸為,故③正確;④,故④正確.【題目點撥】本題主要考查三角函數(shù)的圖象和性質(zhì)應(yīng)用以及三角函數(shù)的恒等變換,意在考查學(xué)生的化簡運算能力.13、【解題分析】
利用等比中項可求出,再由可求出公比.【題目詳解】因為,,所以,,解得.【題目點撥】本題考查了等比數(shù)列的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.14、【解題分析】
根據(jù)題意得到:,解方程即可.【題目詳解】由題知:,解得:.故答案為:【題目點撥】本題主要考查等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)為解題的關(guān)鍵,屬于簡單題.15、【解題分析】
取,代入計算得到答案.【題目詳解】,當(dāng)時故答案為【題目點撥】本題考查了前項和和通項的關(guān)系,取是解題的關(guān)鍵.16、;【解題分析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【題目詳解】圓標(biāo)準(zhǔn)方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【題目點撥】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)線性回歸方程是可靠的.【解題分析】
(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【題目詳解】解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當(dāng)時,,,當(dāng)時,,.故得到的線性回歸方程是可靠的.【題目點撥】本題考查了線性回歸方程的求法與應(yīng)用問題,考查古典概型的概率計算問題,屬于中檔題.18、(1)(2)的方程為,最小為【解題分析】
(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點,當(dāng)直線與直線垂直時,直線被圓截得的弦最小,求解即可.【題目詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點斜式,所以過定點.又點在圓內(nèi),當(dāng)直線與直線垂直時,直線被圓截得的弦最?。驗椋缘男甭?,所以的方程為,即,因為,,所以.【題目點撥】求圓的弦長的常用方法幾何法:設(shè)圓的半徑為r,弦心距為d,弦長為l,則;②代數(shù)方法:運用韋達定理及弦長公式:==.19、(I);(II)或.【解題分析】
(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當(dāng)時,取得最大值,根據(jù)兩直線垂直時斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點的坐標(biāo),由此求得直線的斜率,進而求得直線的方程.【題目詳解】(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.點(0,0)到直線PQ的距離,(Ⅱ),.當(dāng)時,取得最大值.此時,又則直線NC為.由,或當(dāng)點時,,此時MN的方程為.當(dāng)點時,,此時MN的方程為.∴MN的方程為或.【題目點撥】本小題主要考查圓與圓相交所得弦長的求法,考查三角形面積公式,考查直線與圓相交交點坐標(biāo)的求法,考查直線方程的求法,考查兩直線垂直時斜率的關(guān)系,綜合性較強,屬于中檔題.20、(1)(2)【解題分析】
(1)觀察式子特點可知,只有2,4,8三項符合等比數(shù)列特征,再根據(jù)題設(shè)條件求解即可;(2)根據(jù)等比數(shù)列通項公式表示出,再采用分組求和法化簡的表達式即可【題目詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版環(huán)保節(jié)能技術(shù)轉(zhuǎn)化第三方履約擔(dān)保協(xié)議3篇
- 二零二五年飛機租賃與購買合同3篇
- 2024版系統(tǒng)集成項目外包合同3篇
- 二零二五年度鋼結(jié)構(gòu)廠房項目施工圖紙及技術(shù)交底合同3篇
- 二零二五年餐飲店員工派遣及服務(wù)質(zhì)量保證合同3篇
- 二零二五版半地下室租賃合同附帶租賃雙方責(zé)任界定3篇
- 烏蘭察布醫(yī)學(xué)高等??茖W(xué)?!缎W(xué)英語教學(xué)研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版?zhèn)€人住房貸款利率調(diào)整協(xié)議2篇
- 二零二五版房地產(chǎn)抵押權(quán)抵押合同示范文本3篇
- 二零二五年餐飲廚房整體承包運營協(xié)議3篇
- 農(nóng)化分析土壤P分析
- GB/T 18476-2001流體輸送用聚烯烴管材耐裂紋擴展的測定切口管材裂紋慢速增長的試驗方法(切口試驗)
- GA 1551.5-2019石油石化系統(tǒng)治安反恐防范要求第5部分:運輸企業(yè)
- 拘留所教育課件02
- 沖壓生產(chǎn)的品質(zhì)保障
- 《腎臟的結(jié)構(gòu)和功能》課件
- 2023年湖南聯(lián)通校園招聘筆試題庫及答案解析
- 上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析
- 護士事業(yè)單位工作人員年度考核登記表
- 產(chǎn)科操作技術(shù)規(guī)范范本
- 人教版八年級上冊地理全冊單元測試卷(含期中期末試卷及答案)
評論
0/150
提交評論