2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省湛江市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從集合中隨機抽取一個數(shù),從集合中隨機抽取一個數(shù),則向量與向量垂直的概率為()A. B. C. D.2.《五曹算經(jīng)》是我國南北朝時期數(shù)學(xué)家甄鸞為各級政府的行政人員編撰的一部實用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內(nèi)有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛3.已知函數(shù)在區(qū)間內(nèi)單調(diào)遞增,且,若,,,則、、的大小關(guān)系為()A. B. C. D.4.過點P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m間的距離為()A.4 B.2 C.85 D.125.已知A(3,1),B(-1,2),若∠ACB的平分線方程為y=x+1,則AC所在的直線方程為()A.y=2x+4 B.y=x-3 C.x-2y-1=0 D.3x+y+1=06.已知點在第四象限,則角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在中,a,b,c分別為角A,B,C的對邊,若,,,則解的個數(shù)是()A.0 B.1 C.2 D.不確定8.“”是“”成立的()A.充分非必要條件. B.必要非充分條件.C.充要條件. D.既非充分又非必要條件.9.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.10.已知兩條直線m,n,兩個平面α,β,給出下面四個命題:①m//n,m⊥α?n⊥α;②α//β,m?α,n?β?m//n;③m//n,m//α?n//α;④α//β,m//n,m⊥α?n⊥β其中正確命題的序號是()A.①④B.②④C.①③D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為的樣本,其中甲種產(chǎn)品有18件,則樣本容量=.12.設(shè)向量是兩個不共線的向量,若與共線,則_______.13.若a、b、c正數(shù)依次成等差數(shù)列,則的最小值為_______.14.在中,角,,所對的邊分別為,,,若,則角最大值為______.15.如圖,在正方體中,、分別是、的中點,則異面直線與所成角的大小是______.16.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,(1)若,求;(2)求的最大值,并求出對應(yīng)的x的值.18.已知點,圓.(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值.19.在平面直角坐標(biāo)系中,點,點P在x軸上(1)若,求點P的坐標(biāo):(2)若的面積為10,求點P的坐標(biāo).20.已知向量,,函數(shù).(1)若且,求;(2)求函數(shù)的最小正周期T及單調(diào)遞增區(qū)間.21.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

通過向量垂直的條件即可判斷基本事件的個數(shù),從而求得概率.【題目詳解】基本事件總數(shù)為,當(dāng)時,,滿足的基本事件有,,,共3個,故所求概率為,故選B.【題目點撥】本題主要考查古典概型,計算滿足條件的基本事件個數(shù)是解題的關(guān)鍵,意在考查學(xué)生的分析能力.2、C【解題分析】

根據(jù)圓錐的周長求出底面半徑,再計算圓錐的體積,從而估算堆放的稻谷數(shù).【題目詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【題目點撥】本題考查了椎體的體積計算問題,也考查了實際應(yīng)用問題,是基礎(chǔ)題.3、B【解題分析】

由偶函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上為減函數(shù),由對數(shù)的性質(zhì)可得出,由偶函數(shù)的性質(zhì)得出,比較出、、的大小關(guān)系,再利用函數(shù)在區(qū)間上的單調(diào)性可得出、、的大小關(guān)系.【題目詳解】,則函數(shù)為偶函數(shù),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在該函數(shù)在區(qū)間上為減函數(shù),,由換底公式得,由函數(shù)的性質(zhì)可得,對數(shù)函數(shù)在上為增函數(shù),則,指數(shù)函數(shù)為增函數(shù),則,即,,因此,.【題目點撥】本題考查利用函數(shù)的奇偶性與單調(diào)性比較函數(shù)值的大小關(guān)系,同時也考查了利用中間值法比較指數(shù)式和代數(shù)式的大小關(guān)系,涉及指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.4、A【解題分析】設(shè)l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直線5、C【解題分析】設(shè)點A(3,1)關(guān)于直線的對稱點為,則,解得,即,所以直線的方程為,聯(lián)立解得,即,又,所以邊AC所在的直線方程為,選C.點睛:本題主要考查了直線方程的求法,屬于中檔題。解題時要結(jié)合實際情況,準(zhǔn)確地進(jìn)行求解。6、B【解題分析】

根據(jù)第四象限內(nèi)點的坐標(biāo)特征,再根據(jù)正弦值、正切值的正負(fù)性直接求解即可.【題目詳解】因為點在第四象限,所以有:是第二象限內(nèi)的角.故選:B【題目點撥】本題考查了正弦值、正切值的正負(fù)性的判斷,屬于基礎(chǔ)題.7、B【解題分析】

由題得,即得B<A,即得三角形只有一個解.【題目詳解】由正弦定理得,所以B只有一解,所以三角形只有一解.故選:B【題目點撥】本題主要考查正弦定理判定三角形的個數(shù),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、A【解題分析】

依次分析充分性與必要性是否成立.【題目詳解】時,而時不一定成立,所以“”是“”成立的充分非必要條件,選A.【題目點撥】本題考查充要關(guān)系判定,考查基本分析判斷能力,屬基礎(chǔ)題9、D【解題分析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【題目詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當(dāng)與面垂直時體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【題目點撥】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關(guān)鍵.10、A【解題分析】依據(jù)線面垂直的判定定理可知命題①是正確的;對于命題②,直線m,n還有可能是異面,因此不正確;對于命題③,還有可能直線n?α,因此③命題不正確;依據(jù)線面垂直的判定定理可知命題④是正確的,故應(yīng)選答案A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】試題分析:由題意得,解得,故答案為.考點:分層抽樣.12、【解題分析】試題分析:∵向量,是兩個不共線的向量,不妨以,為基底,則,又∵共線,.考點:平面向量與關(guān)系向量13、1【解題分析】

由正數(shù)a、b、c依次成等差數(shù)列,則,則,再結(jié)合基本不等式求最值即可.【題目詳解】解:由正數(shù)a、b、c依次成等差數(shù)列,則,則,當(dāng)且僅當(dāng),即時取等號,故答案為:1.【題目點撥】本題考查了等差中項的運算,重點考查了基本不等式的應(yīng)用,屬基礎(chǔ)題.14、【解題分析】

根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【題目詳解】因為所以角最大值為【題目點撥】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題15、【解題分析】

將所求兩條異面直線平移到一起,解三角形求得異面直線所成的角.【題目詳解】連接,根據(jù)三角形中位線得到,所以是異面直線與所成角.在三角形中,,所以三角形是等邊三角形,故.故填:.【題目點撥】本小題主要考查異面直線所成的角的求法,考查空間想象能力,屬于基礎(chǔ)題.16、128【解題分析】

觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【題目詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【題目點撥】本題考查數(shù)列在數(shù)陣中的應(yīng)用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應(yīng)用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關(guān)系,同時注意每一行開始的數(shù)據(jù)或結(jié)尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(II)1,此時【解題分析】

(Ⅰ)根據(jù)平面向量的坐標(biāo)運算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐標(biāo)運算,利用模長公式和三角函數(shù)求出最大值.【題目詳解】解:(Ⅰ)計算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,當(dāng)cosx=1,即x=1kπ,k∈Z時,|+|取得最大值為1.【題目點撥】本題考查了平面向量的坐標(biāo)運算與數(shù)量積運算問題,是基礎(chǔ)題.18、(1)或.(2)【解題分析】

(1)分切線的斜率不存在與存在兩種情況分析.當(dāng)斜率存在時設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【題目詳解】解:(1)由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點M的直線的斜率不存在時,方程為.由圓心到直線的距離知,此時,直線與圓相切.當(dāng)過點M的直線的斜率存在時,設(shè)方程為,即.由題意知,解得,∴方程為.故過點M的圓的切線方程為或.(2)∵圓心到直線的距離為,∴,解得.【題目點撥】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.19、(1);(2)或【解題分析】

(1)利用兩直線垂直,斜率之積為-1進(jìn)行求解(2)將三角形的面積問題轉(zhuǎn)化成點到直線的距離公式進(jìn)行求解【題目詳解】(1)設(shè)P點坐標(biāo)為,由題意,直線AB的斜率;因為,所以直線PB存在斜率且,即,解得;故點P的坐標(biāo)為;(2)設(shè)P點坐標(biāo)為,P到直線AB的距離為d;由已知,直線AB的方程為;的面積.得,即,解得或;所以點P的坐標(biāo)為或【題目點撥】兩直線垂直的斜率關(guān)系為;已知兩點坐標(biāo)時,距離公式為;三角形面積問題,??赊D(zhuǎn)化為點到直線距離公式進(jìn)行求解.20、(1)(2)最小正周期,的單調(diào)遞增區(qū)間為:.【解題分析】

(1)計算平面向量的數(shù)量積得出函數(shù)的解析式,求出時的值;(2)根據(jù)的解析式,求出它的最小正周期T及單調(diào)遞增區(qū)間.【題目詳解】函數(shù)時,,解得又;(2)函數(shù)它的最小正周期:令故:的單調(diào)遞增區(qū)間為:【題目點撥】本題考查了正弦型函數(shù)的性質(zhì),考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)形結(jié)合的能力,屬于中檔題.21、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解題分析】

(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;

(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論