2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題含解析_第1頁
2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題含解析_第2頁
2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題含解析_第3頁
2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題含解析_第4頁
2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆赤峰市重點中學高一數(shù)學第二學期期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,向量,且,那么等于()A. B. C. D.2.若滿足條件的三角形ABC有兩個,那么a的取值范圍是()A. B. C. D.3.若且,則下列四個不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④4.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.5.已知某地、、三個村的人口戶數(shù)及貧困情況分別如圖(1)和圖(2)所示,為了解該地三個村的貧困原因,當?shù)卣疀Q定采用分層抽樣的方法抽取的戶數(shù)進行調(diào)査,則樣本容量和抽取村貧困戶的戶數(shù)分別是()A., B.,C., D.,6.已知且,則的取值范圍是()A. B. C. D.7.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D8.已知,則().A. B. C. D.9.兩圓和的位置關系是()A.相離 B.相交 C.內(nèi)切 D.外切10.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角的對邊分別為,若面積,則角__________.12.已知向量,,則與的夾角等于_______.13.已知,,與的夾角為鈍角,則的取值范圍是_____;14.已知數(shù)列滿足:,,則_____.15.已知點,,若向量,則向量______.16.已知曲線與直線交于A,B兩點,若直線OA,OB的傾斜角分別為、,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.18.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求不等式的解集.19.銳角三角形的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求面積.20.如圖,四棱錐中,平面,底面是平行四邊形,若,.(Ⅰ)求證:平面平面;(Ⅱ)求棱與平面所成角的正弦值.21.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由兩向量平行,其向量坐標交叉相乘相等,得到.【題目詳解】因為,所以,解得:.【題目點撥】本題考查向量平行的坐標運算,考查基本運算,注意符號的正負.2、C【解題分析】

利用正弦定理,用a表示出sinA,結(jié)合C的取值范圍,可知;根據(jù)存在兩個三角形的條件,即可求得a的取值范圍?!绢}目詳解】根據(jù)正弦定理可知,代入可求得因為,所以若滿足有兩個三角形ABC則所以所以選C【題目點撥】本題考查了正弦定理在解三角形中的簡單應用,判斷三角形的個數(shù)情況,屬于基礎題。3、C【解題分析】

根據(jù)且,可得,,且,,根據(jù)不等式的性質(zhì)可逐一作出判斷.【題目詳解】由且,可得,∴,且,,由此可得①當a=0時,不成立,②由,,則成立,③由,,可得成立,④由,若,則不成立,因此,一定成立的是②③,故選:C.【題目點撥】本題考查不等式的基本性質(zhì)的應用,屬于基礎題.4、A【解題分析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.5、B【解題分析】

將餅圖中的、、三個村的人口戶數(shù)全部相加,再將所得結(jié)果乘以得出樣本容量,在村人口戶數(shù)乘以,再乘以可得出村貧困戶的抽取的戶數(shù).【題目詳解】由圖得樣本容量為,抽取貧困戶的戶數(shù)為戶,則抽取村貧困戶的戶數(shù)為戶.故選B.【題目點撥】本題考查樣本容量的求法,考查分層抽樣、扇形統(tǒng)計圖和條形統(tǒng)計圖計算數(shù)據(jù),考查運算求解能力,屬于基礎題.6、A【解題分析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點睛:本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.7、A【解題分析】

根據(jù)向量共線定理進行判斷即可.【題目詳解】因為,且,有公共點B,所以A,B,D三點共線.故選:A.【題目點撥】本題考查了用向量共線定理證明三點共線問題,屬于常考題.8、A【解題分析】

.所以選A.【題目點撥】本題考查了二倍角及同角正余弦的差與積的關系,屬于基礎題.9、B【解題分析】

由圓的方程可得兩圓圓心坐標和半徑;根據(jù)圓心距和半徑之間的關系,即可判斷出兩圓的位置關系.【題目詳解】由圓的方程可知,兩圓圓心分別為:和;半徑分別為:,則圓心距:兩圓位置關系為:相交本題正確選項:【題目點撥】本題考查圓與圓位置關系的判定;關鍵是明確兩圓位置關系的判定是根據(jù)圓心距與兩圓半徑之間的長度關系確定.10、C【解題分析】

本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【題目詳解】如圖所示,直角三角形的斜邊長為,設內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【題目點撥】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)面積公式計算出的值,然后利用反三角函數(shù)求解出的值.【題目詳解】因為,所以,則,則有:.【題目點撥】本題考查三角形的面積公式以及余弦定理的應用,難度較易.利用面積公式的時候要選擇合適的公式進行化簡,可根據(jù)所求角進行選擇.12、【解題分析】

由已知向量的坐標求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【題目詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【題目點撥】本題考查平面向量的數(shù)量積運算,考查了由數(shù)量積求向量的夾角,是基礎題.13、【解題分析】

與的夾角為鈍角,即數(shù)量積小于0.【題目詳解】因為與的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【題目點撥】本題考查兩向量的夾角為鈍角的坐標表示,一定注意數(shù)量積小于0包括平角.14、【解題分析】

從開始,直接代入公式計算,可得的值.【題目詳解】解:由題意得:,,,,故答案為:.【題目點撥】本題主要考查數(shù)列的遞推公式及數(shù)列的性質(zhì),相對簡單.15、【解題分析】

通過向量的加減運算即可得到答案.【題目詳解】,.【題目點撥】本題主要考查向量的基本運算,難度很小.16、【解題分析】

曲線即圓曲線的上半部分,因為圓是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達定理與直線方程代入即可求解.【題目詳解】由消去得,則,由三角函數(shù)的定義得故.【題目點撥】本題主要考查三角函數(shù)的定義,直線與圓的應用.此題關鍵在于曲線的識別與三角函數(shù)定義的應用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)根據(jù)離心率可得的關系,將點代入橢圓方程,可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得弦長.【題目詳解】(1),又,,即橢圓方程是,代入點,可得,橢圓方程是.(2)設直線方程是,聯(lián)立橢圓方程代入可得.【題目點撥】本題考查了橢圓方程和直線與橢圓的位置關系,涉及弦長公式,屬于簡單題.18、(1),;(2),【解題分析】

(1)由余弦函數(shù)單調(diào)區(qū)間的求法,解不等式即可得解;(2)解三角不等式即可得解.【題目詳解】解:解:(1)令,,解得,,故的單調(diào)遞增區(qū)間為,.(2)因為,所以,即,所以,,解得,.故不等式的解集為,.【題目點撥】本題考查了余弦函數(shù)單調(diào)區(qū)間的求法,重點考查了三角不等式的解法,屬基礎題.19、(1),(2)【解題分析】

(1)利用三角函數(shù)的和差公式化簡已知等式可得,結(jié)合為銳角可得的值.(2)由余弦定理可得,解得的值,根據(jù)三角形的面積公式即可求解.【題目詳解】(1)∵,∴∵∴可得:∵A,C為銳角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因為為銳角三角形,所以需滿足所以所以的面積為【題目點撥】本題主要考查了三角函數(shù)恒等變換及余弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.20、(Ⅰ)見證明;(Ⅱ)【解題分析】

(Ⅰ)先證明平面,再證明平面平面.(Ⅱ)以為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖空間直角坐標系,利用向量法求棱與平面所成角的正弦值.【題目詳解】解:(Ⅰ)∵平面,∴,∵,,,∴,∴,∴平面,又∵平面,∴平面平面.(Ⅱ)以為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖空間直角坐標系,則,,,,于是,,,設平面的一個法向量為,則,解得,∴,設與平面所成角為,則.【題目點撥】本題主要考查空間垂直關系的證明,考查線面角的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力.21、(1).(2)1.【解題分析】

(1)利用向量平行的代數(shù)形式得到x的值;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論