云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

云南省峨山彝族自治縣峨山一中2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)集合A={x|x≥–3},B={x|–3<x<1},則A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}2.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.33.已知,若,則等于()A. B.1 C.2 D.4.將函數(shù)的圖像左移個單位,則所得到的圖象的解析式為A. B.C. D.5.已知數(shù)列2008,2009,1,-2008,-2009…這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2019項之和S2019A.1 B.2010 C.4018 D.40176.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線8.若圓的圓心在第一象限,則直線一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知數(shù)列滿足,,則數(shù)列的前10項和為()A. B. C. D.10.在空間四邊形中,,,,分別是,的中點,,則異面直線與所成角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若圓弧長度等于圓內(nèi)接正六邊形的邊長,則該圓弧所對圓心角的弧度數(shù)為________.12.設(shè)的內(nèi)角、、的對邊分別為、、,且滿足.則______.13.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____.14.已知函數(shù)是定義域為的偶函數(shù).當(dāng)時,,關(guān)于的方程,有且僅有5個不同實數(shù)根,則實數(shù)的取值范圍是_____.15.已知函數(shù)的部分圖象如圖所示,則_______.16.某中學(xué)從甲乙丙3人中選1人參加全市中學(xué)男子1500米比賽,現(xiàn)將他們最近集訓(xùn)中的10次成績(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學(xué)應(yīng)選__________參加比賽.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象關(guān)于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求和的值;(2)當(dāng)時,求函數(shù)的最大值和最小值;(3)設(shè),若的任意一條對稱軸與x軸的交點的橫坐標(biāo)不屬于區(qū)間,求c的取值范圍.18.在區(qū)間內(nèi)隨機取兩個數(shù),則關(guān)于的一元二次方程有實數(shù)根的概率為__________.19.已知,,,且.(1)若,求的值;(2)設(shè),,若的最大值為,求實數(shù)的值.20.如圖,某廣場中間有一塊綠地,扇形所在圓的圓心為,半徑為,,廣場管理部門欲在綠地上修建觀光小路:在上選一點,過修建與平行的小路,與平行的小路,設(shè)所修建的小路與的總長為,.(1)試將表示成的函數(shù);(2)當(dāng)取何值時,取最大值?求出的最大值.21.已知,.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

根據(jù)并集的運算律可計算出集合A∪B.【題目詳解】∵A=xx≥-3,B=x故選:C.【題目點撥】本題考查集合的并集運算,解題的關(guān)鍵就是并集運算律的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.2、C【解題分析】

由等差數(shù)列的前項和公式解得,由,得,由此能求出的值。【題目詳解】解:差數(shù)列的前n項和為,,,解得,解得,故選:C。【題目點撥】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3、A【解題分析】

首先根據(jù)?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡得出,再化為Asin()形式即可得結(jié)果.【題目詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡得,即sin()=,則sin()=故選A.【題目點撥】本題考查了三角函數(shù)的化簡求值以及向量的數(shù)量積的運算,屬于基礎(chǔ)題.4、C【解題分析】

由三角函數(shù)的圖象變換,將函數(shù)的圖像左移個單位,得到,即可得到函數(shù)的解析式.【題目詳解】由題意,將函數(shù)的圖像左移個單位,可得的圖象,所以得到的函數(shù)的解析式為,故選C.【題目點撥】本題主要考查了三角函數(shù)的圖象變換,其中熟記三角函數(shù)的圖象變換的規(guī)則是解答本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、C【解題分析】

計算數(shù)列的前幾項,觀察數(shù)列是一個周期為6的數(shù)列,計算得到答案.【題目詳解】從第二項起,每一項都等于它的前后兩項之和計算數(shù)列前幾項得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…觀察知:數(shù)列是一個周期為6的數(shù)列每個周期和為0S故答案為C【題目點撥】本題考查了數(shù)列的前N項和,觀察數(shù)列的周期是解題的關(guān)鍵.6、C【解題分析】

試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關(guān)系.【題目詳解】請在此輸入詳解!7、B【解題分析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點:平面的基本性質(zhì)及推論.8、A【解題分析】

由圓心位置確定,的正負(fù),再結(jié)合一次函數(shù)圖像即可判斷出結(jié)果.【題目詳解】因為圓的圓心坐標(biāo)為,由圓心在第一象限可得,所以直線的斜率,軸上的截距為,所以直線不過第一象限.【題目點撥】本題主要考查一次函數(shù)的圖像,屬于基礎(chǔ)題型.9、C【解題分析】

由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項和公式求解即可.【題目詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項和公式,.故選:C【題目點撥】本題主要考查等比數(shù)列的定義和等比數(shù)列前項和公式的應(yīng)用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.10、D【解題分析】

平移兩條異面直線到相交,根據(jù)余弦定理求解.【題目詳解】如圖所示:設(shè)的中點為,連接,所以,則是所成的角或其補角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【題目點撥】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解題分析】

根據(jù)圓的內(nèi)接正六邊形的邊長得出弧長,利用弧長公式即可得到圓心角.【題目詳解】因為圓的內(nèi)接正六邊形的邊長等于圓的半徑,所以圓弧長所對圓心角的弧度數(shù)為1.故答案為:1【題目點撥】此題考查弧長公式,根據(jù)弧長求圓心角的大小,關(guān)鍵在于熟記圓的內(nèi)接正六邊形的邊長.12、4【解題分析】

解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.13、【解題分析】

由已知求得母線長,代入圓錐側(cè)面積公式求解.【題目詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【題目點撥】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.14、.【解題分析】

令,則原方程為,根據(jù)原方程有且僅有5個不同實數(shù)根,則有5個不同的解,結(jié)合圖像特征,求出的值或范圍,即為方程解的值或范圍,轉(zhuǎn)化為范圍,即可求解.【題目詳解】令,則原方程為,當(dāng)時,,且為偶函數(shù),做出圖像,如下圖所示:當(dāng)時,有一個解;當(dāng)或,有兩個解;當(dāng)時,有四個解;當(dāng)或時,無解.,有且僅有5個不同實數(shù)根,關(guān)于的方程有一個解為,,另一個解為,在區(qū)間上,所以,實數(shù)的取值范圍是.故答案為:.【題目點撥】本題考查復(fù)合方程根的個數(shù)求參數(shù)范圍,考查了分段函數(shù)的應(yīng)用,利用換元法結(jié)合的函數(shù)的奇偶性的對稱性,利用數(shù)形結(jié)合是解題的關(guān)鍵,屬于難題.15、【解題分析】

由圖可得,即可求得:,再由圖可得:當(dāng)時,取得最大值,即可列方程,整理得:,解得:(),結(jié)合即可得解.【題目詳解】由圖可得:,所以,解得:由圖可得:當(dāng)時,取得最大值,即:整理得:,所以()又,所以【題目點撥】本題主要考查了三角函數(shù)圖象的性質(zhì)及觀察能力,還考查了轉(zhuǎn)化思想及計算能力,屬于中檔題.16、乙;【解題分析】

一個看均值,要均值小,成績好;一個看方差,要方差小,成績穩(wěn)定.【題目詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績好,又穩(wěn)定,應(yīng)選乙、故答案為乙.【題目點撥】本題考查用樣本的數(shù)據(jù)特征來解決實際問題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2);.(3)【解題分析】

(1)由相鄰最高點距離得周期,從而可得,由對稱性可求得;(2)結(jié)合正弦函數(shù)性質(zhì)可得最值.(3),先由半個周期大于得出的一個范圍,在此范圍內(nèi)再尋找,求出對稱軸,由對稱軸且得的范圍.【題目詳解】(1)因為的圖象上相鄰兩個最高點的距離為,所以的最小正周期,而,又因為的圖象關(guān)于直線對稱,所以,即,又,所以.綜上,,.(2)由(1)知,當(dāng)時,,所以,當(dāng)即時,;當(dāng),即時,.(3),的任意一條對稱軸與x軸的交點的橫坐標(biāo)都不屬于區(qū)間,,即,令,得,且,得,當(dāng)時,,當(dāng)時,,當(dāng)時,,故所求范圍.【題目點撥】本題考查由三角函數(shù)性質(zhì)求函數(shù)解析式,考查正弦函數(shù)的最值,考查函數(shù)的對稱性.掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.18、【解題分析】試題分析:解:在平面直角坐標(biāo)系中,以軸和軸分別表示的值,因為m、n是中任意取的兩個數(shù),所以點與右圖中正方形內(nèi)的點一一對應(yīng),即正方形內(nèi)的所有點構(gòu)成全部試驗結(jié)果的區(qū)域.設(shè)事件表示方程有實根,則事件,所對應(yīng)的區(qū)域為圖中的陰影部分,且陰影部分的面積為.故由幾何概型公式得,即關(guān)于的一元二次方程有實根的概率為.考點:本題主要考查幾何概型概率的計算.點評:幾何概型概率的計算,關(guān)鍵是明確基本事件空間及發(fā)生事件的幾何度量,有面積、體積、角度數(shù)、線段長度等.本題涉及到了線性規(guī)劃問題中平面區(qū)域.19、(1)0(2)【解題分析】

(1)通過可以算出,移項、兩邊平方即可算出結(jié)果.(2)通過向量的運算,解出,再通過最大值根的分布,求出的值.【題目詳解】(1)通過可以算出,即故答案為0.(2),設(shè),,,即的最大值為;①當(dāng)時,(滿足條件);②當(dāng)時,(舍);③當(dāng)時,(舍)故答案為【題目點撥】當(dāng)式子中同時出現(xiàn)時,常??梢岳脫Q元法,把用進行表示,但計算過程中也要注意自變量的取值范圍;二次函數(shù)最值一定要注意對稱軸是否在規(guī)定區(qū)間范圍內(nèi),再討論最后的結(jié)果.20、(1),;(2)時,.【解題分析】

(1)由扇形的半徑為,在中,,則,利用正弦定理求出、,從而可得出函數(shù);(2)利用三角恒等變換思想,可得出,,利用正弦函數(shù)的單調(diào)性與最值即可求出的最大值.【題目詳解】(1)由于扇形的半徑為,,在中,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論