版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省長沙市雅禮教育集團(tuán)數(shù)學(xué)高一下期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的解集為()A.B.C.D.2.若,則t=()A.32 B.23 C.14 D.133.設(shè)P是所在平面內(nèi)的一點,,則()A. B. C. D.4.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}則A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)5.在中,三個內(nèi)角成等差數(shù)列是的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件6.已知直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為A.5 B.4 C.2 D.17.從甲、乙、丙三人中,任選兩名代表,甲被選中的概率為()A. B. C. D.8.在中,角,,的對邊分別是,,,若,則()A. B. C. D.9.半徑為,中心角為的弧長為()A. B. C. D.10.如圖,測量河對岸的塔高時,選與塔底B在同一水平面內(nèi)的兩個測點C與D.現(xiàn)測得,,,并在點C測得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m二、填空題:本大題共6小題,每小題5分,共30分。11.直線與直線的交點為,則________.12.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.13.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值等于________.14.已知,則的最小值為_______.15.水平放置的的斜二測直觀圖如圖所示,已知,,則邊上的中線的實際長度為______.16.若點為圓的弦的中點,則弦所在的直線的方程為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當(dāng)時,求直線的方程.18.已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長19.如圖,已知點和點,,且,其中為坐標(biāo)原點.(1)若,設(shè)點為線段上的動點,求的最小值;(2)若,向量,,求的最小值及對應(yīng)的的值.20.已知從甲地到乙地的公路里程約為240(單位:km).某汽車每小時耗油量Q(單位:L)與速度x(單位:)()的關(guān)系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①,②,經(jīng)多次檢驗得到以下一組數(shù)據(jù):x04060120Q020(1)你認(rèn)為哪一個是符合實際的函數(shù)模型,請說明理由;(2)從甲地到乙地,這輛車應(yīng)以多少速度行駛才能使總耗油量最少?21.已知等差數(shù)列的前n項和為,且,.(1)求;(2)設(shè)數(shù)列的前n項和為,求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
利用反三角函數(shù)的定義以及正切函數(shù)的周期為,即可得到原方程的解.【題目詳解】由,根據(jù)正切函數(shù)圖像以及周期可知:,故選:C【題目點撥】本題考查了反三角函數(shù)的定義以及正切函數(shù)的性質(zhì),需熟記正切函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.2、B【解題分析】
先計算得到,再根據(jù)得到等式解得答案.【題目詳解】故答案選B【題目點撥】本題考查了向量的計算,意在考查學(xué)生對于向量運(yùn)算法則的靈活運(yùn)用及計算能力.3、B【解題分析】移項得.故選B4、A【解題分析】
可解出集合A,然后進(jìn)行交集的運(yùn)算即可.【題目詳解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故選:A.【題目點撥】本題考查交集的運(yùn)算,是基礎(chǔ)題,注意A中x∈N5、B【解題分析】
根據(jù)充分條件和必要條件的定義結(jié)合等差數(shù)列的性質(zhì)進(jìn)行求解即可.【題目詳解】在△ABC中,三個內(nèi)角成等差數(shù)列,可能是A,C,B成等差數(shù)列,則A+B=2C,則C=60°,不一定滿足反之若B=60°,則A+C=120°=2B,則A、B、C成等差數(shù)列,∴三個內(nèi)角成等差數(shù)列是的必要非充分條件,故選:B.【題目點撥】本題主要考查充分條件和必要條件的判斷,考查了等差中項的應(yīng)用,屬于基礎(chǔ)題.6、C【解題分析】試題分析:由已知有,∴,∴.考點:1.兩直線垂直的充要條件;2.均值定理的應(yīng)用.7、D【解題分析】
采用列舉法寫出總事件,再結(jié)合古典概型公式求解即可【題目詳解】被選出的情況具體有:甲乙、甲丙、乙丙,甲被選中有兩種,則故選:D8、D【解題分析】
由題意,再由余弦定理可求出,即可求出答案.【題目詳解】由題意,,設(shè),由余弦定理可得:,則.故選D.【題目點撥】本題考查了正、余弦定理的應(yīng)用,考查了計算能力,屬于中檔題.9、D【解題分析】
根據(jù)弧長公式,即可求得結(jié)果.【題目詳解】,.故選D.【題目點撥】本題考查了弧長公式,屬于基礎(chǔ)題型.10、D【解題分析】
由正弦定理確定的長,再求出.【題目詳解】,由正弦定理得:故選D【題目點撥】本題是正弦定理的實際應(yīng)用,關(guān)鍵是利用正弦定理求出,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
(2,2)為直線和直線的交點,即點(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進(jìn)而得a+b的值?!绢}目詳解】因為直線與直線的交點為,所以,,即,,故.【題目點撥】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。12、【解題分析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【題目詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【題目點撥】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.13、1【解題分析】
由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【題目詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點睛】解本題首先要能根據(jù)韋達(dá)定理判斷出a,b均為正值,當(dāng)他們與-2成等差數(shù)列時,共有6種可能,當(dāng)-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.14、【解題分析】
運(yùn)用基本不等式求出結(jié)果.【題目詳解】因為,所以,,所以,所以最小值為【題目點撥】本題考查了基本不等式的運(yùn)用求最小值,需要滿足一正二定三相等.15、【解題分析】
利用斜二測直觀圖的畫圖規(guī)則,可得為一個直角三角形,且,得,從而得到邊上的中線的實際長度為.【題目詳解】利用斜二測直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長度保持不變;平行于軸或在軸上的線段,長度減半,利用逆向原則,所以為一個直角三角形,且,所以,所以邊上的中線的實際長度為.【題目點撥】本題考查斜二測畫法的規(guī)則,考查基本識圖、作圖能力.16、;【解題分析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【題目詳解】圓標(biāo)準(zhǔn)方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【題目點撥】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)或【解題分析】
(1)圓心到切線的距離等于圓的半徑,從而易得圓標(biāo)準(zhǔn)方程;(2)考慮直線斜率不存在時是否符合題意,在斜率存在時,設(shè)直線方程為,根據(jù)垂徑定理由弦長得出圓心到直線的距離,現(xiàn)由點(圓心)到直線的距離公式可求得.【題目詳解】(1)由于圓A與直線相切,∴,∴圓A的方程為.(2)①當(dāng)直線與x軸垂直時,易知與題意相符,使.②當(dāng)直線與x軸不垂直時,設(shè)直線的方程為即,連接,則,∵,∴,由,得.∴直線,故直線的方程為或.【題目點撥】本題考查直線與圓的位置關(guān)系,解題關(guān)鍵是垂徑定理的應(yīng)用,在圓中與弦長有關(guān)的問題通常都是用垂徑定理解決.18、(1);(2).【解題分析】
(1)利用正弦定理化簡已知可得:,結(jié)合兩角和的正弦公式及誘導(dǎo)公式可得:,問題得解.(2)利用可得:,兩邊平方并結(jié)合已知及平面向量數(shù)量積的定義即可得解.【題目詳解】解:(1)因為,所以由正弦定理可得,即,因為,所以,,,故.(2)由已知得,所以,所以.【題目點撥】本題主要考查了正弦定理的應(yīng)用及兩角和的正弦公式,還考查了利用平面向量的數(shù)量積解決長度問題,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.19、(1);(2),或.【解題分析】
(1)設(shè),求出,把表示成關(guān)于的二次函數(shù);(2)利用向量的坐標(biāo)運(yùn)算得,令把表示成關(guān)于的二次函數(shù),再求最小值.【題目詳解】(1)設(shè),又,所以,,所以當(dāng)時,取得最小值.(2)由題意得,,,則=,令,因為,所以,又,所以,,所以當(dāng)時,取得最小值,即,解得或,所以當(dāng)或時,取得最小值.【題目點撥】本題考查利用向量的坐標(biāo)運(yùn)算求向量的模和數(shù)量積,在求解過程中用到知一求二的思想方法,即已知三個中的一個,另外兩個均可求出.20、(1)選擇模型①,見解析;(2)80.【解題分析】
(1)由題意可知所選函數(shù)模型應(yīng)為單調(diào)遞增函數(shù),即可判斷選擇;(2)將,代入函數(shù)型①,可得出的值,進(jìn)而可得出總耗油量關(guān)于速度的函數(shù)關(guān)系式,進(jìn)而得解.【題目詳解】(1)選擇模型①理由:由題意可知所選函數(shù)模型應(yīng)為單調(diào)遞增函數(shù),而函數(shù)模型②為一個單調(diào)遞減函數(shù),故選擇模型①.(2)將,代入函數(shù)型①,可得:,則,總耗油量:,當(dāng)時,W有最小值30.甲地到乙地,這輛車以80km/h的速度行駛才能使總耗油量最少.【題目點撥】本題考查函數(shù)模型的實際應(yīng)用,考查邏輯思維能力,考查實際應(yīng)用能力,屬于常考題.21、(1);(2)見解析【解題分析】
(1)設(shè)公差為,由,可得解得,,從而可得結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度臨時用工工作滿意度調(diào)查及改進(jìn)協(xié)議4篇
- 二零二五年度宿舍安全管理宿管員聘用協(xié)議范本3篇
- 二零二五年度ISO 22000食品安全管理體系認(rèn)證咨詢協(xié)議3篇
- 二零二五年度商業(yè)地產(chǎn)項目配套場地租賃服務(wù)協(xié)議2篇
- 二零二五年度外資企業(yè)外籍員工聘用協(xié)議范本3篇
- 2025年度文化旅游項目募集資金三方監(jiān)管合同4篇
- 2025年度豬圈建造與生物安全防護(hù)合同4篇
- 2025年度生物制藥研發(fā)合作協(xié)議
- 二零二五年度城市綠化用地承包合同范本4篇
- 2025年智能車輛識別一體機(jī)銷售與服務(wù)合同范本4篇
- 班級建設(shè)方案中等職業(yè)學(xué)校班主任能力大賽
- 纖維增強(qiáng)復(fù)合材料 單向增強(qiáng)材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測定 編制說明
- 習(xí)近平法治思想概論教學(xué)課件緒論
- 寵物會展策劃設(shè)計方案
- 孤殘兒童護(hù)理員(四級)試題
- 梁湘潤《子平基礎(chǔ)概要》簡體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 調(diào)料廠工作管理制度
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
評論
0/150
提交評論