版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省宜賓市翠屏區(qū)2023-2024學年數(shù)學九上期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖的扇形的圓心角為()A.120° B.180° C.240° D.300°2.若拋物線y=﹣x2+bx+c經(jīng)過點(﹣2,3),則2c﹣4b﹣9的值是()A.5B.﹣1C.4D.183.如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結論:①②③④關于的方程有一個根為其中正確的結論個數(shù)有()A.1個 B.2個 C.3個 D.4個4.某?!把袑W”活動小組在一次野外實踐時,發(fā)現(xiàn)一種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是,則這種植物每個支干長出的小分支個數(shù)是()A. B. C. D.5.如圖,的半徑為3,是的弦,直徑,,則的長為()A. B. C. D.6.如圖,⊙O的弦CD與直徑AB交于點P,PB=1cm,AP=5cm,∠APC=30°,則弦CD的長為()A.4cm B.5cm C.cm D.cm7.已知則()A. B. C. D.8.已知正比例函數(shù)y=ax與反比例函數(shù)在同一坐標系中的圖象如圖,判斷二次函數(shù)y=ax2+k在坐系中的大致圖象是()A. B.C. D.9.學校體育室里有6個箱子,分別裝有籃球和足球(不混裝),數(shù)量分別是8,9,16,20,22,27,體育課上,某班體育委員拿走了一箱籃球,在剩下的五箱球中,足球的數(shù)量是籃球的2倍,則這六箱球中,籃球有()箱.A.2 B.3 C.4 D.510.對于一個函數(shù),自變量x取a時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,且x1<1<x2,則c的取值范圍是()A.c<﹣3 B.c<﹣2 C.c< D.c<1二、填空題(每小題3分,共24分)11.若關于x的一元二次方程x2﹣4x+m=0沒有實數(shù)根,則m的取值范圍是_____.12.如果一元二次方程有兩個相等的實數(shù)根,那么是實數(shù)的取值為________.13.拋物線y=(x-2)2+3的頂點坐標是______.14.在中,,點在直線上,,點為邊的中點,連接,射線交于點,則的值為________.15.如圖,的直徑垂直弦于點,且,,則弦__________.16.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的坐標是______.17.如圖,在△ABC中,D為AC邊上一點,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的長等于________cm.18.若正六邊形的邊長為2,則此正六邊形的邊心距為______.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣3,0),與y軸交于點B,且與正比例函數(shù)y=x的圖象交點為C(m,4).(1)求一次函數(shù)y=kx+b的解析式;(2)求△BOC的面積;(3)若點D在第二象限,△DAB為等腰直角三角形,則點D的坐標為.20.(6分)如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,D為弧AC的中點,E是BA延長線上一點,∠DAE=105°.(1)求∠CAD的度數(shù);(2)若⊙O的半徑為4,求弧BC的長.21.(6分)某校園藝社計劃利用已有的一堵長為10m的墻,用籬笆圍一個面積為的矩形園子.(1)如圖,設矩形園子的相鄰兩邊長分別為、.①求y關于x的函數(shù)表達式;②當時,求x的取值范圍;(2)小凱說籬笆的長可以為9.5m,洋洋說籬笆的長可以為10.5m.你認為他們倆的說法對嗎?為什么?22.(8分)如圖,直線與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A,B兩點.(1)求拋物線的解析式.(2)點P是第一象限拋物線上的一點,連接PA,PB,PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請求出QP+QA的最小值.23.(8分)某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:(1)兩個班共有女生多少人?(2)將頻數(shù)分布直方圖補充完整;(3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù);(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.24.(8分)我們不妨約定:如圖①,若點D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點為△ABC邊AB上的“理想點”.(1)如圖①,若點D是△ABC的邊AB的中點,AC=,AB=4.試判斷點D是不是△ABC邊AB上的“理想點”,并說明理由.(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點D是△ABC邊AB上的“理想點”,求CD的長.(3)如圖③,已知平面直角坐標系中,點A(0,2),B(0,-3),C為x軸正半軸上一點,且滿足∠ACB=45°,在y軸上是否存在一點D,使點A是B,C,D三點圍成的三角形的“理想點”,若存在,請求出點D的坐標;若不存在,請說明理由.25.(10分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:(1)兩次取出的小球標號相同;(2)兩次取出的小球標號的和等于4.26.(10分)四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【詳解】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的2倍,∴2πr2=πrR,∴R=2r,設圓心角為n,有=2πr=πR,∴n=180°.故選B.考點:圓錐的計算2、A【解析】∵拋物線y=﹣x2+bx+c經(jīng)過點(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故選A.3、C【解析】由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;由OA=OC,得到方程有一個根為-c,設另一根為x,則=2,解方程可得x=4+c即可判斷④;從而可得出答案.【詳解】由圖象開口向下,可知a<0,與y軸的交點在x軸的下方,可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,故①正確;由圖象可知當x=3時,y>0,∴9a+3b+c>0,故②錯誤;由圖象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正確;∵OA=OC,∴方程有一個根為-c,設另一根為x.∵對稱軸為直線x=2,∴=2,解得:x=4+c.故④正確;綜上可知正確的結論有三個.故選C.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關系以及二次函數(shù)與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.4、C【分析】設這種植物每個支干長出x個小分支,根據(jù)主干、支干和小分支的總數(shù)是43,即可得出關于x的一元二次方程,解之取其正值即可得出結論【詳解】設這種植物每個支干長出個小分支,依題意,得:,解得:(舍去),.故選C.【點睛】此題考查一元二次方程的應用,解題關鍵在于列出方程5、C【分析】連接OC,利用垂徑定理以及圓心角與圓周角的關系求出;再利用弧長公式即可求出的長.【詳解】解:連接OC(同弧所對的圓心角是圓周角的2倍)∵直徑∴=(垂徑定理)∴故選C【點睛】本題考查了垂徑定理、圓心角與圓周角以及利用弧長公式求弧長,熟練掌握相關定理和公式是解答本題的關鍵.6、D【分析】作OH⊥CD于H,連接OC,如圖,先計算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三邊的關系得到OH=1,則可根據(jù)勾股定理計算出CH,然后根據(jù)垂徑定理得到CH=DH,從而得到CD的長.【詳解】解:作OH⊥CD于H,連接OC,如圖,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故選:D.【點睛】本題考查了含30度角的直角三角形的性質(zhì)、勾股定理以及垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、A【解析】根據(jù)特殊角的三角函數(shù)值求解即可.【詳解】∵,∴,故選:A.【點睛】本題考查了特殊角的三角函數(shù)值,比較簡單,熟記特殊角的三角函數(shù)值是解題的關鍵.8、B【解析】根據(jù)正比例函數(shù)y=ax與反比例函數(shù)y=的函數(shù)圖象可知:a<0,k>0,然后根據(jù)二次函數(shù)圖象的性質(zhì)即可得出答案.【詳解】正比例函數(shù)y=ax與反比例函數(shù)y=的函數(shù)圖象可知:a<0,k>0,
則二次函數(shù)y=ax2+k的圖象開口向下,且與y軸的交點在y軸的正半軸,
所以大致圖象為B圖象.
故選B.【點睛】本題考查了二次函數(shù)及正比例函數(shù)與反比例函數(shù)的圖象,屬于基礎題,關鍵是注意數(shù)形結合的思想解題.9、B【分析】先計算出這些水果的總質(zhì)量,再根據(jù)剩下的足球與籃球的數(shù)量關系,通過推理判斷出拿走的籃球的個數(shù),從而計算出剩余籃球的個數(shù).【詳解】解:∵8+9+16+20+22+27=102(個)根據(jù)題意,在剩下的五箱球中,足球的數(shù)量是籃球的2倍,∴剩下的五箱球中,籃球和足球的總個數(shù)是3的倍數(shù),由于102是3的倍數(shù),所以拿走的籃球個數(shù)也是3的倍數(shù),只有9和27符合要求,假設拿走的籃球的個數(shù)是9個,則(102-9)÷3=31,剩下的籃球是31個,由于剩下的五個數(shù)中,沒有哪兩個數(shù)的和是31個,故拿走的籃球的個數(shù)不是9個,假設拿走的籃球的個數(shù)是27個,則(102-27)÷3=25,剩下的籃球是25個,只有9+16=25,所以剩下2箱籃球,故這六箱球中,籃球有3箱,故答案為:B.【點睛】本題主要考查的是學生能否通過初步的分析、比較、推理得出正確的結論,培養(yǎng)學生有順序、全面思考問題的意識.10、B【分析】由題意知二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,由此可知方程x2+x+c=0有兩個不相等的實數(shù)根,即△=1-4c>0,再由題意可得函數(shù)y=x2+x+c=0在x=1時,函數(shù)值小于0,即1+1+c<0,由此可得關于c的不等式組,解不等式組即可求得答案.【詳解】由題意知二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,所以x1、x2是方程x2+2x+c=x的兩個不相等的實數(shù)根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的兩個不相等實數(shù)根為x1、x2,x1<1<x2,所以函數(shù)y=x2+x+c=0在x=1時,函數(shù)值小于0,即1+1+c<0,綜上則,解得c<﹣2,故選B.【點睛】本題考查了二次函數(shù)與一元二次方程的關系,正確理解題中的定義,熟練掌握二次函數(shù)與一元二次方程的關系是解題的關鍵.二、填空題(每小題3分,共24分)11、m>4【分析】根據(jù)根的判別式即可求出答案.【詳解】解:由題意可知:△<0,∴,∴m>4故答案為:m>4【點睛】本題考查根的判別式,解題的關鍵是熟練運用根的判別式.12、【分析】根據(jù)一元二次方程有兩個相等的實數(shù)根,得知其判別式的值為0,即=32-4×2×m=0,解得m即可.【詳解】解:根據(jù)題意得,=32-4×2×m=0,
解得m=.故答案為:.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與=b2-4ac有如下關系:當>0時,方程有兩個不相等的實數(shù)根;當=0時,方程有兩個相等的實數(shù)根;當<0時,方程無實數(shù)根.13、(2,3)【分析】已知解析式為頂點式,可直接根據(jù)頂點式的坐標特點,求頂點坐標,從而得出對稱軸.【詳解】解:y=(x-2)2+3是拋物線的頂點式,
根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).
故答案為(2,3)【點睛】考查將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.14、或【分析】分兩種情況討論:①當D在線段BC上時,如圖1,過D作DH∥CE交AB于H.②當D在線段CB延長線上時,如圖2,過B作BH∥CE交AD于H.利用平行線分線段成比例定理解答即可.【詳解】分兩種情況討論:①當D在線段BC上時,如圖1,過D作DH∥CE交AB于H.∵DH∥CE,∴.設BH=x,則HE=3x,∴BE=4x.∵E是AB的中點,∴AE=BE=4x.∵EM∥HD,∴.②當D在線段CB延長線上時,如圖2,過B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.設DH=x,則HM=2x.∵E是AB的中點,EM∥BH,∴,∴AM=MH=2x,∴.綜上所述:的值為或.故答案為:或.【點睛】本題考查了平行線分線段成比例定理.掌握輔助線的作法是解答本題的關鍵.15、【分析】先根據(jù)題意得出⊙O的半徑,再根據(jù)勾股定理求出BE的長,進而可得出結論.【詳解】連接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5?3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案為:.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.16、或【分析】先求出點A(-4,0),B(0,-3),利用勾股定理得到AB=5,過點P作PC⊥AB于點C,則PC=1,證明△PAC∽△BAO,得到,求出PA=,再分點P在點A的左側和右側兩種情況分別求出OP,即可得到點P的坐標.【詳解】令中x=0,得y=-3;令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,過點P作PC⊥AB于點C,則PC=1,∴∠PCA=∠AOB=90°,∵∠PAC=∠BAO,∴△PAC∽△BAO,∴,∴,∴PA=,當點P在點A左側時,PO=PA+OA=+4=,∴點P的坐標為(-,0);當點P在點A的右側時,PO=OA-PA=4-=,∴點P的坐標為(-,0),故答案為:或.【點睛】此題考查一次函數(shù)與x軸、y軸的交點坐標,勾股定理,圓的切線的性質(zhì)定理,相似三角形的判定及性質(zhì),解題中注意運用分類討論的思想.17、1【解析】由條件可證得△ABC∽△ADB,可得到=,從而可求得AC的長,最后計算CD的長.【詳解】∵∠DBA=∠C,∠A是公共角,∴△ABC∽△ADB,∴=,即=,解得:AC=8,∴CD=8﹣2=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質(zhì),掌握利用兩組角對應相等可判定兩個三角形相似是解題的關鍵.18、.【分析】連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.三、解答題(共66分)19、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C點坐標代入正比例函數(shù)解析式可求得m,再把A、C坐標代入一次函數(shù)解析式可求得k、b,可求得答案;(2)先求出點B的坐標,然后根據(jù)三角形的面積公式即可得到結論;(3)由題意可分AB為直角邊和AB為斜邊兩種情況,當AB為直角邊時,再分A為直角頂點和B為直角頂點兩種情況,此時分別設對應的D點為D2和D1,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,可證明△BED1≌△AOB(AAS),可求得D1的坐標,同理可求得D2的坐標,AD1與BD2的交點D3就是AB為斜邊時的直角頂點,據(jù)此即可得出D點的坐標.【詳解】(1)∵點C(m,4)在正比例函數(shù)y=x的圖象上,∴m=4,解得:m=3,∴C(3,4),∵點C(3,4)、A(﹣3,0)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴一次函數(shù)的解析式為y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB為直角邊和AB為斜邊兩種情況,當AB為直角邊時,分A為直角頂點和B為直角頂點兩種情況,如圖,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,∵點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴點D1的坐標為(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴點D2的坐標為(﹣5,3),當AB為斜邊時,如圖,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,設AD1的解析式為y=k1x+b1,將A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式為:y=5x+15,設BD2的解析式為y=k2x+b2,將B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式為:y=x+2,解方程組得:,∴D3(,),綜上可知點D的坐標為(﹣2,5)或(﹣5,3)或(,).故答案為:(﹣2,5)或(﹣5,3)或(,).【點睛】本題考查了一次函數(shù)與幾何綜合題,涉及了待定系數(shù)法求函數(shù)解析式,直線交點坐標,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,綜合性較強,正確把握并能熟練運用相關知識是解題的關鍵.注意分類思想的運用.20、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到結論;(2)根據(jù)平角的定義得到∠BAC=40°,連接OB,OC,根據(jù)圓周角定理得到∠BOC=80°,根據(jù)弧長公式即可得到結論.【詳解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D為的中點,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,連接OB,OC,∴∠BOC=80°,∴弧BC的長==.【點睛】本題考查了三角形的外接圓和外心,圓心角、弧、弦的關系和圓周角定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。?1、(1)①,②;(2)小凱的說法錯誤,洋洋的說法正確.【分析】(1)①根據(jù)矩形的面積公式計算即可,注意自變量的取值范圍;②構建不等式即可解決問題;(2)構建方程求解即可解決問題;【詳解】(1)①由題意xy=12,②y?4時,,解得所以.(2)當時,整理得:,方程無解.當時,整理得,符合題意;∴小凱的說法錯誤,洋洋的說法正確.【點睛】本題考查反比例函數(shù)的應用.(1)①中需注意,因為墻的寬度為10m,所以y≤10,據(jù)此可求得自變量x的取值范圍;②中求得x的取值要與①中取公共解集;(2)能根據(jù)根的判別式判斷一元二次方程解的情況是解決此問的關鍵.22、(1);(2)①點P的坐標為(,1);②【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;
(2)設出點P的坐標,①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可.【詳解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵拋物線經(jīng)過A、B兩點,∴解得∴拋物線的解析式為.(2)①設點P的坐標為(,),過點P分別作x軸、y軸的垂線,垂足分別為D、E.∴∵∴∴,∵點P在第一象限,所以∴點P的坐標為(,1)②設拋物線與x軸的另一交點為C,則點C的坐標為(,)連接PC交對稱軸一點,即Q點,則PC的長就是QP+QA的最小值,所以QP+QA的最小值就是.【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積,對稱性,解本題的關鍵是求拋物線解析式.23、(1)50;(2)詳見解析;(3);(4)【分析】(1)根據(jù)D的人數(shù)除以所占的百分比即可的總人數(shù);(2)根據(jù)C的百分比乘以總人數(shù),可得C的人數(shù),再根據(jù)總人數(shù)減去A、B、C、D、F,便可計算的E的人數(shù),分別在直方圖上表示即可.(3)根據(jù)直方圖上E的人數(shù)比總人數(shù)即可求得的E百分比,再計算出圓心角即可.(4)畫樹狀圖統(tǒng)計總數(shù)和來自同一班級的情況,再計算概率即可.【詳解】解:(1)總人數(shù)為人,答:兩個班共有女生50人;(2)C部分對應的人數(shù)為人,部分所對應的人數(shù)為;頻數(shù)分布直方圖補充如下:(3)扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù)為;(4)畫樹狀圖:共有20種等可能的結果數(shù),其中這兩人來自同一班級的情況占8種,所以這兩人來自同一班級的概率是.【點睛】本題是一道數(shù)據(jù)統(tǒng)計的綜合性題目,難度不大,這類題目,往往容易得分,應當熟練的掌握.24、(1)是,理由見解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依據(jù)邊長AC=,AB=4,D是邊AB的中點,得到AC2=,可得到兩個三角形相似,從而得到∠ACD=∠B;(2)由點D是△ABC的“理想點”,得到∠ACD=∠B或∠BCD=∠A,分兩種情況證明均得到CD⊥AB,再根據(jù)面積法求出CD的長;(3)使點A是B,C,D三點圍成的三角形的“理想點”,應分兩種情況討論,利用三角形相似分別求出點D的坐標即可.【詳解】(1)D是△ABC邊AB上的“理想點”,理由:∵AB=4,點D是△ABC的邊AB的中點,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC邊AB上的“理想點”.(2)如圖②,∵點D是△ABC的“理想點”,∴∠ACD=∠B或∠BCD=∠A,當∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度私人租地養(yǎng)殖項目投資合同
- 2025年度酒店客房裝飾設計租賃合同
- 二零二五年度數(shù)據(jù)中心租賃合同租金變動與網(wǎng)絡安全保障補充協(xié)議
- 二零二五年度校園周邊餐館承包運營合同
- 二零二五年度企業(yè)稅務籌劃與優(yōu)化合同
- 2025年度魚塘養(yǎng)殖權及品牌使用權轉讓合同
- 2025年度高新技術企業(yè)員工社保解除勞動合同范本證明
- 2025年度文化旅游融合發(fā)展連帶擔保合同
- 2025年度解除方協(xié)議申請書與市場退出策略合同
- 二零二五年度電動自行車充電樁運營維護合同簡易版
- 風電場事故案例分析
- 八年級上冊-2024年中考歷史總復習核心考點與重難點(部編版)
- 醫(yī)院科室人才建設規(guī)劃方案
- 護理飲食指導整改措施及方案
- 全國大學生英語競賽詞匯大綱
- 情緒障礙跨診斷治療的統(tǒng)一方案
- 胸外科手術圍手術期處理
- 《企業(yè)管理課件:團隊管理知識點詳解PPT》
- 配網(wǎng)設備缺陷分類及管理重點標準
- UI與交互設計人機交互設計(第二版)PPT完整全套教學課件
- 《插畫設計》課程標準
評論
0/150
提交評論