專題訓練四 一元二次方程的解法歸納_第1頁
專題訓練四 一元二次方程的解法歸納_第2頁
專題訓練四 一元二次方程的解法歸納_第3頁
專題訓練四 一元二次方程的解法歸納_第4頁
專題訓練四 一元二次方程的解法歸納_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

全品作業(yè)本九年級上冊新課標(BS)數(shù)學本課件僅供交流學習使用,嚴禁用于任何商業(yè)用途第二章

一元二次方程第二章

一元二次方程專題訓練(四)

一元二次方程的解法歸納方法一形如(x+m)2=n(n≥0)的一元二次方程可用直接開平方法CC3.解下列方程:(1)(x-1)2=4;

(2)(4x+1)2=(2x-5)2.方法二能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法較為簡便4.一元二次方程x(x-3)=3-x的根是(

)A.x=-1 B.x=3C.x1=-1,x2=3 D.x1=1,x2=2C[解析]∵x(x-3)=3-x,∴x(x-3)+(x-3)=0,∴(x+1)(x-3)=0,∴x+1=0或x-3=0,∴x1=-1,x2=3.5.解下列方程:(1)x(x-2)=x-2;

(2)3(x-5)2=2(x-5);5.解下列方程:(3)2(x+2)(x-1)=(x+2)(x+4);

(4)9(x-2)2=4(x+1)2.6.多項式乘法:(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左使用,即可得到“十字相乘法”進行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).示例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)嘗試分解因式:x2+6x+8=(x+______)(x+______);解:x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4).故答案為2,4.6.多項式乘法:(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左使用,即可得到“十字相乘法”進行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).示例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(2)應用請用上述方法解方程:x2-3x-4=0.解:∵x2-3x-4=0,x2+(-4+1)x+(-4)×1=0,∴(x-4)(x+1)=0,則x+1=0或x-4=0,∴x1=-1,x2=4.方法三如果方程的二次項系數(shù)為1,且一次項系數(shù)為偶數(shù),那么用配方法

較簡便7.用配方法解下列方程,配方正確的是(

)A.2y2-4y-4=0可化為(y-1)2=4B.x2-2x-9=0可化為(x-1)2=8C.x2+8x-9=0可化為(x+4)2=16D.x2-4x=0可化為(x-2)2=4D8.解方程:(1)x2-2019=2x;

(2)2x2-4x=2x+1;

8.解方程:(3)(x+1)2-10(x+1)+9=0.解:把x+1看成一個整體,則原方程化為(x+1)2-10(x+1)+25=16,(x+1-5)2=16,即(x-4)2=16,x-4=±4,∴x1=8,x2=0.方法四如果一個一元二次方程易化為它的一般形式且系數(shù)的絕對值較小,

那么可用公式法來求解B10.解下列方程:(1)x2-x-1=0;(2)x2-7x=-5;10.解下列方程:(3)y(y-3)=1.方法五如果在方程中出現(xiàn)一些相同的代數(shù)式,把它們用某一個字母代替后

能得到一個較簡單的一元二次方程,這樣的方程可用換元法來求解11.解方程(x-1)2-5(x-1)+4=0時,我們可以將x-1看成一個整體,設x-1=y(tǒng),則原方程可化為y2-5y+4=0,解得y1=1,y2=4.當y=1時,即x-1=1,解得x=2;當y=4時,即x-1=4,解得x=5.所以原方程的解為x1=2,x2=5.利用這種方法可求得方程(2x+5)2-4(2x+5)+3=0的解為(

)A.x1=1,x2=3

B.x1=-2,x2=3C.x1=-3,x2=-1

D.x1=-1,x2=-2D[解析](2x+5)2-4(2x+5)+3=0,設2x+5=y(tǒng),則原方程可化為y2-4y+3=0,所以y1=1,y2=3.當y=1時,即2x+5=1,解得x=-2;當y=3時,即2x+5=3,解得x=-1.所以原方程的解為x1=-1,x2=-2.故選D.D[解析]設a2+b2=x,則原方程可化為x2-2x=8,x2-2x-8=0,解得x1=4,x2=-2.因為兩個數(shù)的平方和是非負數(shù),所以a2+b2的值為4.BC[解析]設a+b=t,則原方程可化為t(t-2)-8=0,即(t+2)(t-4)=0,解得t=-2或t=4,即a+b的值為-2或4.故選C.15.解方程:(x-2)2-3(2-x)+2=0.解:設2-x=y(tǒng),則原方程可化為y2-3y+2=0,(y-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論