版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省深圳市平湖中學數(shù)學高二下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲乙丙三人代表班級參加校運會的跑步,跳遠,鉛球比賽,每人參加一項,每項都要有人參加,他們的身高各不同.現(xiàn)了解到以下情況:(1)甲不是最高的;(2)最高的沒報鉛球;(3)最矮的參加了跳遠;(4)乙不是最矮的,也沒參加跑步;可以判斷丙參加的比賽項目是()A.跑步比賽 B.跳遠比賽 C.鉛球比賽 D.無法判斷2.在△中,為邊上的中線,為的中點,則A. B.C. D.3.設圓x2+y2+2x-2=0截x軸和y軸所得的弦分別為AB和CDA.22 B.23 C.24.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a5.如圖,將一個各面都涂了油漆的正方體,切割為個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取出一個小正方體,記它的油漆面數(shù)為,則的均值()A. B. C. D.6.河南洛陽的龍門石窟是中國石刻藝術寶庫之一,現(xiàn)為世界文化遺產(chǎn),龍門石窟與莫高窟、云岡石窟、麥積山石窟并稱中國四大石窟.現(xiàn)有一石窟的某處“浮雕像”共7層,每上層的數(shù)量是下層的2倍,總共有1016個“浮雕像”,這些“浮雕像”構成一幅優(yōu)美的圖案,若從最下層往上“浮雕像”的數(shù)量構成一個數(shù)列,則的值為()A.8 B.10 C.12 D.167.假設如圖所示的三角形數(shù)表的第行的第二個數(shù)為,則()A.2046 B.2416 C.2347 D.24868.已知變量之間的線性回歸方程為,且變量之間的一組相關數(shù)據(jù)如表所示,則下列說法錯誤的是()A.變量之間呈現(xiàn)負相關關系B.的值等于5C.變量之間的相關系數(shù)D.由表格數(shù)據(jù)知,該回歸直線必過點9.下列函數(shù)既是奇函數(shù)又在(﹣1,1)上是減函數(shù)的是()A. B.C.y=x﹣1 D.y=tanx10.一個三位數(shù)的百位,十位,個位上的數(shù)字依次是,當且僅當時稱為“凹數(shù)”,若,從這些三位數(shù)中任取一個,則它為“凹數(shù)”的概率是A. B. C. D.11.如圖,在正方體中,分別是,的中點,則四面體在平面上的正投影是A. B. C. D.12.函數(shù)的圖象在處的切線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國南宋數(shù)學家楊輝所著的《詳解九章算術》中,用圖①的三角形形象地表示了二項式系數(shù)規(guī)律,俗稱“楊輝三角形”.現(xiàn)將楊輝三角形中的奇數(shù)換成,偶數(shù)換成,得到圖②所示的由數(shù)字和組成的三角形數(shù)表,由上往下數(shù),記第行各數(shù)字的和為,如,,,,……,則______14.把單位向量繞起點逆時針旋轉(zhuǎn),再把模擴大為原來的3倍,得到向量,點在線段上,若,則的值為__________.15.某地環(huán)保部門召集6家企業(yè)的負責人座談,其中甲企業(yè)有2人到會,其余5家企業(yè)各有1人到會,會上有3人發(fā)言,則發(fā)言的3人來自3家不同企業(yè)的可能情況的總數(shù)為_______.16.,若,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)在上的最大值;(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;(3)當時,函數(shù)的圖象與軸交于兩點,且,又是的導函數(shù).若正常數(shù)滿足條件.證明:.18.(12分)已知,,分別為內(nèi)角,,的對邊,.(1)求;(2)若,的面積為,求的周長.19.(12分)已知的圖象上相鄰兩對稱軸之間的距離為1.(1)求的單調(diào)遞增區(qū)間;(2)若,且,求的值.20.(12分)甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功.某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數(shù)為隨機變量X,求X的分布列和數(shù)學期望.21.(12分)(衡水金卷2018年普通高等學校招生全國統(tǒng)一考試模擬試卷)如圖,在三棱柱中,側棱底面,且,是棱的中點,點在側棱上運動.(1)當是棱的中點時,求證:平面;(2)當直線與平面所成的角的正切值為時,求二面角的余弦值.22.(10分)選修4—5:不等式選講設函數(shù).(1)若,求不等式的解集;(2)若關于的不等式恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】分析:由(1),(3),(4)可知,乙參加了鉛球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,參加了跳遠,即可得出結論.詳解:由(1),(3),(4)可知,乙參加了鉛球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,參加了跳遠,所以丙最高,參加了跑步比賽.故選:A.點睛:本題考查合情推理,考查學生分析解決問題的能力.2、A【解題分析】分析:首先將圖畫出來,接著應用三角形中線向量的特征,求得,之后應用向量的加法運算法則-------三角形法則,得到,之后將其合并,得到,下一步應用相反向量,求得,從而求得結果.詳解:根據(jù)向量的運算法則,可得,所以,故選A.點睛:該題考查的是有關平面向量基本定理的有關問題,涉及到的知識點有三角形的中線向量、向量加法的三角形法則、共線向量的表示以及相反向量的問題,在解題的過程中,需要認真對待每一步運算.3、C【解題分析】
先求出|AB|,|CD|,再求四邊形ABCD的面積.【題目詳解】x2+y令y=0得x=±3-1,則令x=0得y=±2,所以|CD|=2四邊形ACBD的面積S=故答案為:C【題目點撥】本題主要考查直線和圓的位置關系,考查弦長的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.4、A【解題分析】
令xex=t,構造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,x【題目詳解】令xex=t,構造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1?故選A.【題目點撥】解決函數(shù)零點問題,常常利用數(shù)形結合、等價轉(zhuǎn)化等數(shù)學思想.5、C【解題分析】分析:由題意知,分別求出相應的概率,由此能求出.詳解:由題意知,;;;;.故選:C.點睛:正確找出所涂油漆的面數(shù)的正方體的個數(shù)及古典概型的概率計算公式、分布列與數(shù)學期望是解題的關鍵.6、C【解題分析】
數(shù)列,是等比數(shù)列,公比為2,前7項和為1016,由此可求得首項,得通項公式,從而得結論.【題目詳解】最下層的“浮雕像”的數(shù)量為,依題有:公比,解得,則,,從而,故選C.【題目點撥】本題考查等比數(shù)列的應用.數(shù)列應用題求解時,關鍵是根據(jù)題設抽象出數(shù)列的條件,然后利用數(shù)列的知識求解.7、B【解題分析】
由三角形數(shù)表特點可得,利用累加法可求得,進而得到結果.【題目詳解】由三角形數(shù)表可知:,,,…,,,整理得:,則.故選:.【題目點撥】本題考查數(shù)列中的項的求解問題,關鍵是能夠采用累加法準確求得數(shù)列的通項公式.8、C【解題分析】分析:根據(jù)線性回歸方程的性質(zhì)依次判斷各選項即可.詳解:對于A:根據(jù)b的正負即可判斷正負相關關系.線性回歸方程為,b=﹣0.7<0,負相關.對于B:根據(jù)表中數(shù)據(jù):=1.可得=2.即,解得:m=3.對于C:相關系數(shù)和斜率不是一回事,只有當樣本點都落在直線上是才滿足兩者相等,這個題目顯然不滿足,故不正確.對于D:由線性回歸方程一定過(,),即(1,2).故選:C.點睛:本題考查了線性回歸方程的求法及應用,屬于基礎題,對于回歸方程,一定要注意隱含條件,樣本中心滿足回歸方程,再者計算精準,正確理解題意,應用回歸方程對總體進行估計.9、B【解題分析】
對各選項逐一判斷即可,利用在上為增函數(shù),在上為減函數(shù),即可判斷A選項不滿足題意,令,即可判斷其在遞增,結合復合函數(shù)的單調(diào)性判斷法則即可判斷B選項滿足題意對于C,D,由初等函數(shù)性質(zhì),直接判斷其不滿足題意.【題目詳解】解:根據(jù)題意,依次分析選項:對于A,在上為增函數(shù),在上為減函數(shù),所以y(3x﹣3﹣x)在R上為增函數(shù),不符合題意;對于B,,所以是奇函數(shù),令,則由,兩個函數(shù)復合而成又,它在上單調(diào)遞增所以既是奇函數(shù)又在(﹣1,1)上是減函數(shù),符合題意,對于C,y=x﹣1是反比例函數(shù),是奇函數(shù),但它在(﹣1,1)上不是減函數(shù),不符合題意;對于D,y=tanx為正切函數(shù),是奇函數(shù),但在(﹣1,1)上是增函數(shù),不符合題意;故選:B.【題目點撥】本題主要考查了函數(shù)奇偶性的判斷,還考查了復合函數(shù)單調(diào)性的判斷法則及初等函數(shù)的性質(zhì),屬于中檔題。10、C【解題分析】
先分類討論求出所有的三位數(shù),再求其中的凹數(shù)的個數(shù),最后利用古典概型的概率公式求解.【題目詳解】先求所有的三位數(shù),個位有4種排法,十位有4種排法,百位有4種排法,所以共有個三位數(shù).再求其中的凹數(shù),第一類:凹數(shù)中有三個不同的數(shù),把最小的放在中間,共有種,第二類,凹數(shù)中有兩個不同的數(shù),將小的放在中間即可,共有種方法,所以共有凹數(shù)8+6=14個,由古典概型的概率公式得P=.故答案為:C【題目點撥】本題主要考查排列組合的運用,考查古典概型的概率,意在考查學生對這些知識的掌握水平和分析推理能力.11、C【解題分析】分析:根據(jù)正投影的概念判斷即可.詳解:根據(jù)正投影的概念判斷選C.選C.點睛:本題考查正投影的概念,需基礎題.12、A【解題分析】
先求出切點的坐標和切線的斜率,再寫出切線的方程.【題目詳解】當x=1時,f(1)=-2+0=-2,所以切點為(1,-2),由題得,所以切線方程為y+2=-1·(x-1),即:故選:A【題目點撥】本題主要考查導數(shù)的幾何意義和切線方程的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、64.【解題分析】
將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,可得第1次全行的數(shù)都為1的是第2行,第2次全行的數(shù)都為1的是第4行,…,由此可知全奇數(shù)的行出現(xiàn)在2n的行數(shù),即第n次全行的數(shù)都為1的是第2n行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,問題得以解決.【題目詳解】解:由題意,將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,可得第1次全行的數(shù)都為1的是第2行,第2次全行的數(shù)都為1的是第4行,…,由此可知全奇數(shù)的行出現(xiàn)在2n的行數(shù),即第n次全行的數(shù)都為1的是第2n行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S126=2×31+2=64,故答案為:64點睛:本題考查歸納推理,屬中檔題.14、【解題分析】
由題意可得,與夾角為,先求得,則,再利用平面向量數(shù)量積的運算法則求解即可.【題目詳解】單位向量繞起點逆時針旋轉(zhuǎn),再把模擴大為原來的3倍,得到向量,所以,與夾角為,因為,所以,所以,故答案為.【題目點撥】本題主要考查平面向量幾何運算法則以及平面向量數(shù)量積的運算,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差;(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).15、30種【解題分析】
對發(fā)言的3人進行討論,一類是3個中有來自甲企業(yè),一類是3人中沒有來自甲企業(yè).【題目詳解】(1)當發(fā)言的3人有來自甲企業(yè),則共有:;(2)當發(fā)言的3人沒有來自甲企業(yè),則共有:;所以可能情況的總數(shù)為種.【題目點撥】本題考查分類與分步計數(shù)原理,解題的關鍵在于對3個發(fā)言人來自企業(yè)的討論,即有來自甲和沒有來自甲.16、【解題分析】
均值不等式推廣;【題目詳解】【題目點撥】熟練掌握。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)-1;(2);(3)參考解析【解題分析】試題分析:(1),可知在[,1]是增函數(shù),在[1,2]是減函數(shù),所以最大值為f(1).(2)在區(qū)間上為單調(diào)遞增函數(shù),即在上恒成立.,利用分離參數(shù)在上恒成立,即求的最大值.(3)有兩個實根,,兩式相減,又,.要證:,只需證:,令可證.試題解析:(1)函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),所以.(2)因為,所以,因為在區(qū)間單調(diào)遞增函數(shù),所以在(0,3)恒成立,有=,()綜上:(3)∵,又有兩個實根,∴,兩式相減,得,∴,于是.要證:,只需證:只需證:.(*)令,∴(*)化為,只證即可.在(0,1)上單調(diào)遞增,,即.∴.(其他解法根據(jù)情況酌情給分)18、(1);(2).【解題分析】
(1)利用正弦定理把邊轉(zhuǎn)化為角,再由兩角和的正弦可求出角;(2)利用三角形面積公式可得到,再由余弦定理可求出的周長;【題目詳解】(1)由正弦定理知,∴,∴,.(或用余弦定理將換掉求解)(2)由(1)及已知可得,解得,由余弦定理知,∴,∴的周長為.【題目點撥】本題考查了正弦定理、余弦定理以及面積公式,考查了學生的計算能力,屬于較易題.19、(1),.(2)【解題分析】
(1)利用半角公式和輔助角公式可得,根據(jù)相鄰兩對稱軸之間的距離為1求解周期T,即得,再令,求解即得單調(diào)遞增區(qū)間;(2)代入,可得,轉(zhuǎn)化,結合即得解.【題目詳解】(1)解:.由題意,最小正周期,所以.所以.由,,得,.所以的單調(diào)遞增區(qū)間為,.(2)因為,由(1)知,即.因為,所以.從而.所以.【題目點撥】本題考查了正弦型函數(shù)的綜合應用,考查了學生綜合分析、轉(zhuǎn)化劃歸、數(shù)學運算的能力,屬于中檔題.20、(1);(1)分布列詳見解析,.【解題分析】試題分析:本題主要考查概率、離散型隨機變量的分布列和數(shù)學期望等基礎知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,在總數(shù)中去掉左右手各取一球,所取顏色相同的情況,即所取顏色均為紅色,均為黑色、均為白色的情況;第二問,先分別求出左右手所取的兩球顏色相同的概率,再利用獨立事件計算兩次取球的獲得成功的次數(shù)為0次、1次、1次的概率,列出分布列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鋪面租賃合同范本匯編大全3篇
- 二零二五版臨時工勞動合同解除補償協(xié)議4篇
- 2025餐飲店年度員工勞動合同終止與清算合同3篇
- 2024-2025年中國移動即時通信(IM)市場運營現(xiàn)狀及行業(yè)發(fā)展趨勢報告
- 2025年度木托板線上線下銷售渠道合作協(xié)議3篇
- 2025年度制造業(yè)場委托招聘協(xié)議3篇
- 二零二五年度魚塘承包與漁業(yè)綠色生產(chǎn)合作協(xié)議4篇
- 2025年硅丙外用乳膠漆項目投資可行性研究分析報告
- 2025年中國波紋膨脹儲油柜行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年新型環(huán)保廠房空調(diào)設備更新改造工程合同4篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 2025春夏運動戶外行業(yè)趨勢白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓課件
- 高低壓配電柜產(chǎn)品營銷計劃書
- 2024年4月自考02202傳感器與檢測技術試題
- 重癥醫(yī)學科健康宣教手冊
- 2022版《義務教育英語課程標準》解讀培訓課件
- 五個帶頭方面談心談話范文三篇
- 互聯(lián)網(wǎng)的發(fā)展歷程
評論
0/150
提交評論