計算機控制系統(tǒng) 課件 第5、6章 計算機控制系統(tǒng)的模擬化設(shè)計、計算機控制系統(tǒng)的離散化設(shè)計 - 副本_第1頁
計算機控制系統(tǒng) 課件 第5、6章 計算機控制系統(tǒng)的模擬化設(shè)計、計算機控制系統(tǒng)的離散化設(shè)計 - 副本_第2頁
計算機控制系統(tǒng) 課件 第5、6章 計算機控制系統(tǒng)的模擬化設(shè)計、計算機控制系統(tǒng)的離散化設(shè)計 - 副本_第3頁
計算機控制系統(tǒng) 課件 第5、6章 計算機控制系統(tǒng)的模擬化設(shè)計、計算機控制系統(tǒng)的離散化設(shè)計 - 副本_第4頁
計算機控制系統(tǒng) 課件 第5、6章 計算機控制系統(tǒng)的模擬化設(shè)計、計算機控制系統(tǒng)的離散化設(shè)計 - 副本_第5頁
已閱讀5頁,還剩260頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

《計算機控制系統(tǒng)》第五章計算機控制系統(tǒng)的模擬化設(shè)計法(間接設(shè)計法或連續(xù)化設(shè)計法)問題的提出計算機控制系統(tǒng)的核心—數(shù)字控制;計算機控制系統(tǒng)—模擬信號、離散信號和數(shù)字信號混合系統(tǒng);連續(xù)系統(tǒng)的控制器設(shè)計算法不能直接應(yīng)用—為什么開設(shè)經(jīng)典控制課程?第5章計算機控制系統(tǒng)的模擬化設(shè)計法2模塊導(dǎo)學(xué)數(shù)字控制器的設(shè)計3間接設(shè)計方法經(jīng)典設(shè)計方法狀態(tài)空間法直接設(shè)計方法按連續(xù)系統(tǒng)設(shè)計控制器連續(xù)控制器離散化建立離散模型,系統(tǒng)離散化在離散域直接設(shè)計控制器數(shù)字控制器設(shè)計狀態(tài)反饋控制器設(shè)計狀態(tài)觀測器設(shè)計線性二次型最優(yōu)控制器設(shè)計建立離散模型,系統(tǒng)離散化配置閉環(huán)系統(tǒng)期望極點建立離散模型,系統(tǒng)離散化配置觀測器子系統(tǒng)期望極點確定性能指標(biāo)函數(shù)求解Riccati方程模塊導(dǎo)學(xué)第5章計算機控制系統(tǒng)的模擬化設(shè)計法本章教學(xué)內(nèi)容(思維導(dǎo)圖)第5章計算機控制系統(tǒng)的模擬化設(shè)計法4模塊導(dǎo)學(xué)本章的基礎(chǔ)知識第5章計算機控制系統(tǒng)的模擬化設(shè)計法5模塊導(dǎo)學(xué)

本章教學(xué)思路第5章計算機控制系統(tǒng)的模擬化設(shè)計法6模塊導(dǎo)學(xué)采用經(jīng)典的連續(xù)系統(tǒng)控制器設(shè)計理論進行數(shù)字控制器的設(shè)計,達到控制器設(shè)計過程簡單實用、便于掌握的目的。此即為模擬化設(shè)計方法。設(shè)計路線離散化處理(保證系統(tǒng)的穩(wěn)定性,使數(shù)字控制與模擬控制的相似)連續(xù)系統(tǒng)設(shè)計方法(根軌跡、頻率特性)連續(xù)系統(tǒng)對象與指標(biāo)

本章的核心問題

連續(xù)控制器的離散化!第5章計算機控制系統(tǒng)的模擬化設(shè)計法7模塊導(dǎo)學(xué)本章的教學(xué)目標(biāo)(1)掌握模擬化設(shè)計思想(2)熟悉連續(xù)控制器離散化方法(3)掌握數(shù)字PID控制器設(shè)計與實現(xiàn)(4)掌握數(shù)字PID控制器的工程化改進方法(5)了解PID控制器的整定方法第5章計算機控制系統(tǒng)的模擬化設(shè)計法8模塊導(dǎo)學(xué)典型計算機控制系統(tǒng)的基本結(jié)構(gòu)

第5章計算機控制系統(tǒng)的模擬化設(shè)計法9模塊導(dǎo)學(xué)

數(shù)字控制系統(tǒng)的簡化結(jié)構(gòu)A/D和D/A的轉(zhuǎn)換精度足夠高,檢測裝置響應(yīng)足夠快第5章計算機控制系統(tǒng)的模擬化設(shè)計法10模塊導(dǎo)學(xué)離散化設(shè)計方法(直接設(shè)計方法)

計算機控制系統(tǒng)模擬化設(shè)計方法第5章計算機控制系統(tǒng)的模擬化設(shè)計法11模塊導(dǎo)學(xué)假想連續(xù)控制系統(tǒng)采樣頻率足夠高離散化處理模擬化設(shè)計方法中忽略因素的影響分析第5章計算機控制系統(tǒng)的模擬化設(shè)計法12模塊導(dǎo)學(xué)采樣開關(guān)和零階保持器的影響計算機控制系統(tǒng)的典型結(jié)構(gòu)也可以表示為:

第5章計算機控制系統(tǒng)的模擬化設(shè)計法13模塊導(dǎo)學(xué)采樣開關(guān)和零階保持器的影響

計算機控制系統(tǒng)的等效開環(huán)傳遞函數(shù):

采樣周期T很小

零階保持器具有低通濾波器特性

考慮了零階保持器和采樣開關(guān)的被控對象廣義模型采樣開關(guān)和零階保持器的影響第5章計算機控制系統(tǒng)的模擬化設(shè)計法14模塊導(dǎo)學(xué)被控對象廣義模型

等效開環(huán)傳遞函數(shù):

連續(xù)系統(tǒng)的開環(huán)傳遞函數(shù):

泰勒級數(shù)展開并取前2項第5章計算機控制系統(tǒng)的模擬化設(shè)計法155.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例165.1離散與連續(xù)等效設(shè)計的基本步驟典型計算機控制系統(tǒng)框圖175.1離散與連續(xù)等效設(shè)計的基本步驟典型計算機控制系統(tǒng)結(jié)構(gòu)典型計算機控制系統(tǒng)結(jié)構(gòu)示意圖計算機控制系統(tǒng)連續(xù)控制系統(tǒng)假想的連續(xù)控制系統(tǒng)計算機控制系統(tǒng)模擬化設(shè)計方法18采樣頻率足夠高離散化處理5.1離散與連續(xù)等效設(shè)計的基本步驟連續(xù)域-離散化設(shè)計(采樣頻率足夠高,忽略采用保持器):在連續(xù)域(平面)上進行控制系統(tǒng)的分析、設(shè)計,得到滿足性能指標(biāo)的連續(xù)控制系統(tǒng);離散化,得到與連續(xù)系統(tǒng)指標(biāo)相接近的計算機控制系統(tǒng)。195.1離散與連續(xù)等效設(shè)計的基本步驟

205.1離散與連續(xù)等效設(shè)計的基本步驟

215.1離散與連續(xù)等效設(shè)計的基本步驟基本步驟第三步:將變?yōu)椴罘址匠袒驙顟B(tài)空間方程,并編寫計算機程序。225.1離散與連續(xù)等效設(shè)計的基本步驟第5章計算機控制系統(tǒng)的模擬化設(shè)計法235.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例245.2模擬控制器的離散化255.2模擬控制器的離散化最常用的表征控制器特性的主要指標(biāo)零極點個數(shù)系統(tǒng)的帶寬穩(wěn)定性與穩(wěn)態(tài)誤差相位及增益裕度階躍響應(yīng)或脈沖響應(yīng)頻率響應(yīng)常用的離散化方法:(1)數(shù)字積分法一階反向差分變換;一階正向差分變換法;雙線性變換法;(2)脈沖響應(yīng)不變法(Z變換法);(3)階躍響應(yīng)不變法(+保持器的Z變換法);(4)零、極點匹配法265.2模擬控制器的離散化

275.2模擬控制器的離散化

285.2模擬控制器的離散化

295.2模擬控制器的離散化5.2.1反向差分變換法305.2模擬控制器的離散化反向差分變換方法的主要特點如下:變換計算簡單;??平面的左半平面映射到??平面的單位圓內(nèi)部一個小圓內(nèi),因而,如果??(??)穩(wěn)定,則變換后??(??)的也是穩(wěn)定的;不能保持??(??)的脈沖與頻率響應(yīng)。

315.2模擬控制器的離散化

325.2模擬控制器的離散化5.2.2正向差分變換法335.2模擬控制器的離散化

正向差分變換法的特點:345.2模擬控制器的離散化③正向差分變換法的穩(wěn)定域正向差分變換s平面與z平面的對應(yīng)關(guān)系

355.2模擬控制器的離散化5.2.3雙線性變換法由下圖所示的梯形面積近似積分并且進行Z變換,并整理得到:同時可以得到雙線性變換:365.2模擬控制器的離散化

375.2模擬控制器的離散化5.2.3雙線性變換法雙線性變換將s平面上整個左半平面映射到z平面上以原點為圓心的單位圓內(nèi)部(這是z平面上的穩(wěn)定區(qū)),如下圖所示:38雙線性變換s平面與z平面的對應(yīng)關(guān)系5.2模擬控制器的離散化

395.2模擬控制器的離散化5.2.3雙線性變換法例題用雙線性變換法將模擬積分控制器離散化為數(shù)字積分控制器。405.2模擬控制器的離散化解:得數(shù)字控制器的脈沖傳遞函數(shù)為上式可以寫成由上式可以得出相應(yīng)的差分方程%MATLABPROGRAM5.2.1.3num=1;den=[1,0];[dnum,dden]=c2dm(num,den,1,'tustin');printsys(dnum,dden,'z')5.2.3雙線性變換法415.2模擬控制器的離散化5.2.4脈沖響應(yīng)不變法425.2模擬控制器的離散化

435.2模擬控制器的離散化

445.2模擬控制器的離散化根據(jù)查表法:5.2.4脈沖響應(yīng)不變法455.2模擬控制器的離散化舉例:

465.2模擬控制器的離散化5.2.5階躍響應(yīng)不變法475.2模擬控制器的離散化基本思想:亦稱加零階保持器的Z變換法。要求離散脈沖傳遞函數(shù)和連續(xù)傳遞函數(shù)的單位階躍響應(yīng)在采樣時刻相等。

485.2模擬控制器的離散化5.2.5階躍響應(yīng)不變法這個方程的右邊可以看作前面加了一個采樣器和零階保持器。因而,可以假設(shè)一個連續(xù)信號和一個假想的采樣--保持裝置,如圖所示:這里的采樣保持器是一個虛擬的數(shù)字模型,而不是實際硬件。由于這種方法加入了零階保持器,對變換所得的離散濾波器會帶來相移,當(dāng)采樣頻率較低時,應(yīng)進行補償。零階保持器的加入,雖然保持了階躍響應(yīng)和穩(wěn)態(tài)增益不變的特性,但未從根本上改變Z變換的性質(zhì)。495.2模擬控制器的離散化

505.2模擬控制器的離散化5.2.6零、極點匹配法所謂零、極點匹配z變換法,就是按照一定的規(guī)則把的零點映射到離散濾波器的零點,把的極點映射到的極點。極點的變換同z變換相同,零點的變換添加了新的規(guī)則。設(shè)連續(xù)傳遞函數(shù)

的分母和分子分別為n階和m階,稱有m個有限零點,n-m個的無限零點,如:其有限零點為,還有兩個的無限值零點。515.2模擬控制器的離散化5.2.6零、極點匹配法零極點匹配Z變換的規(guī)則:

(1)所有的極點和所有的有限值零點均按照變換(2)根軌跡匹配:所有的在處的零點變換成在處的零點。(3)穩(wěn)態(tài)值匹配:要保證變換前后的增益不變,還需進行增益匹配。零極點匹配Z變換的目標(biāo):

匹配前后,兩者有相同的穩(wěn)態(tài)響應(yīng)。525.2模擬控制器的離散化5.2.6零、極點匹配法舉例:535.2模擬控制器的離散化求的零、極點匹配z變換。解:按規(guī)則(2),增加一個零點:由規(guī)則(3)有:解得于是:%MATLABPROGRAM5.2.1.6num=1;den=[1,1];ts=1;[dnum,dden]=c2dm(num,den,ts,'matched');printsys(dnum,dden,'z')5.2.6零、極點匹配法545.2模擬控制器的離散化5.2.6零、極點匹配法舉例求的零、極點匹配z變換。555.2模擬控制器的離散化解:按高頻增益匹配于是下表給出了連續(xù)傳遞函數(shù),在各種離散化方法變換后得到的等效的脈沖傳遞函數(shù)及相應(yīng)的變換方程。5.2模擬控制器的離散化變換方法變換方程等效的脈沖傳遞函數(shù)

反向差分變換法正向差分變換法雙線性變換法脈沖響應(yīng)不變法階躍響應(yīng)不變法零、極點匹配Z變換法

第5章計算機控制系統(tǒng)的模擬化設(shè)計法575.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例

經(jīng)過150多年發(fā)展,控制理論與方法層出不窮,PID是迄今為止應(yīng)用最廣泛的一種控制方法,目前95%以上的過程控制和90%以上航空航天控制都是基于PID控制。[1].SamadT.Asurveyonindustryimpactandchallengesthereof.IEEEControlSystemsMagazine,37(1):17-18,2017.

2017年國際自動控制聯(lián)合會(IFAC)的工業(yè)委員會對工業(yè)技術(shù)現(xiàn)狀進行了調(diào)查,在十幾種控制方法中,PID以百分之百好評(零差評)的絕對優(yōu)勢居于榜首[1]。2017年IFAC工業(yè)委員會對工業(yè)技術(shù)現(xiàn)狀進行了調(diào)查,PID以絕對優(yōu)勢居于榜首

5.3數(shù)字PID控制器設(shè)計

5.3數(shù)字PID控制器設(shè)計模擬PID控制器數(shù)字PID控制器605.3數(shù)字PID控制器設(shè)計5.3.1模擬PID控制器設(shè)計(1)比例積分微分控制器(PID)

PID控制器是根據(jù)閉環(huán)控制系統(tǒng)的給定值與實際輸出值的偏差來進行控制的,控制偏差:將偏差的比例、積分和微分的線性組合構(gòu)成控制量,對被控對象進行控制,其控制規(guī)律傳遞函數(shù)形式:

5.3數(shù)字PID控制器設(shè)計

5.3.1模擬PID控制器設(shè)計(2)PID控制系統(tǒng)參數(shù)對性能影響

5.3數(shù)字PID控制器設(shè)計

5.3.1模擬PID控制器設(shè)計(2)PID控制系統(tǒng)參數(shù)對性能影響

5.3數(shù)字PID控制器設(shè)計

5.3.1模擬PID控制器設(shè)計(2)PID控制系統(tǒng)參數(shù)對性能影響

5.3數(shù)字PID控制器設(shè)計P(比例)—根據(jù)當(dāng)下(現(xiàn)在)的偏差進行控制I(積分)—根據(jù)積累(過去)的偏差進行控制D(微分)—根據(jù)偏差的變化率(未來)進行控制

因此,PID控制律是依據(jù)偏差的“過去、現(xiàn)在、未來”而實施的控制,當(dāng)代所有的新型控制策略都離不開這一思想。(3)PID控制律中的哲學(xué)思想5.3.1模擬PID控制器設(shè)計

5.3數(shù)字PID控制器設(shè)計(4)連續(xù)(模擬)PID控制器結(jié)構(gòu)形式5.3.1模擬PID控制器設(shè)計

并聯(lián)型PID控制器

標(biāo)準(zhǔn)型PID控制器

5.3數(shù)字PID控制器設(shè)計(5)模擬PID控制器的硬件實現(xiàn)5.3.1模擬PID控制器設(shè)計

輸入端電流通過電容對反饋的電壓與參考電壓的差值進行微分處理,并且借助電感對差值實現(xiàn)積分,而輸入端電阻則是起到了比例運算的作用,反饋電阻則提供了調(diào)節(jié)放大倍數(shù),實際上為了避免產(chǎn)生自激振蕩,反饋電阻不可過大,該歷程采用了一個電容與電感的組合作為控制系統(tǒng)為案例,實際仿真結(jié)果表明該系統(tǒng)對低階系統(tǒng)能夠起到控制作用。5.3數(shù)字PID控制器設(shè)計685.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制器算法數(shù)字PID控制器的設(shè)計思想(1)用計算機實現(xiàn)PID控制;(2)用數(shù)字逼近的方法實現(xiàn)PID控制算法,求和代替積分,向后差分代替微分,從而使模擬PID離散化為差分方程。

695.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法

705.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法

715.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法

725.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法舉例設(shè)一被控對象:

(1)位置式PID控制算法(1)位置式PID控制算法735.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法%MATLABPROGRAM5.3.2.1clc;clear;ts=0.001;sys=tf(523500,[187.35104700]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;y_1=0.0;y_2=0.0;y_3=0.0;x=[0,0,0]';error_1=0;time=zeros(1,1000);yd=zeros(1,1000);u=zeros(1,1000);y=zeros(1,1000);error=zeros(1,1000);fork=1:1:1000time(k)=k*ts;yd(k)=1.0;kp=0.5;ki=0.001;kd=0.001;u(k)=kp*x(1)+kd*x(2)+ki*x(3);y(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=yd(k)-y(k);u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=y(k);x(1)=error(k);x(2)=(error(k)-error_1)/ts;x(3)=x(3)+error(k)*ts;error_1=error(k);endfigureplot(time,y,'k:','linewidth',2);xlabel('t(s)','Fontname','TimesNewRoman','FontSize',14);ylabel('y','TimesNewRoman','FontSize',14);gridon745.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法

755.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法(2)增量式PID控制算法765.3數(shù)字PID控制器設(shè)計其中:5.3.2數(shù)字PID控制算法也可以進一步簡化為:式中:它們都是與采樣周期、比例系數(shù)、積分時間常數(shù)、微分時間常數(shù)有關(guān)的系數(shù)。上式可以簡化為:775.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法舉例設(shè)一被控對象為令采樣時間為1ms,請設(shè)計一組使得被控對象穩(wěn)定的增量式PID控制器。

(2)增量式PID控制算法785.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法(2)增量式PID控制算法%MATLABPROGRAM5.3.2.2clc;clear;ts=0.001;sys=tf(400,[1500]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v');u1=0;u2=0;u3=0;y1=0;y2=0;y3=0;x=[000]’;error1=0;error2=0;time=zeros(3000,1);yd=zeros(3000,1);u=zeros(3000,1);y=zeros(3000,1);fork=1:1:3000time(k)=k*ts;yd(k)=1.0;kp=8;ki=0.10;kd=10;u(k)=kp*x(1)+kd*x(2)+ki*x(3);u(k)=u1+u(k);y(k)=-den(2)*y1-den(3)*y2+num(2)*u1+num(3)*u2;error=yd(k)-y(k);u1=u(k);u2=u1;u3=u2;y1=y(k);y2=y1;y3=y2;x(1)=error-error1;x(2)=error-2*error1+error2;x(3)=error;error2=error1;error1=error;endfigure;plot(time,y,'k','linewidth',2);xlabel('t(s)','FontSize',14);ylabel('y','FontSize',14);gridon795.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法

805.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法815.3數(shù)字PID控制器設(shè)計5.3.2數(shù)字PID控制算法數(shù)字PID控制算法流程

將輸出給D/Ae(k-2)=e(k-1)e(k-1)=e(k)采樣時刻到否?A/DD/A被控對象第5章計算機控制系統(tǒng)的模擬化設(shè)計法825.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例835.4數(shù)字PID控制算法的工程化改進

845.4數(shù)字PID控制算法的工程化改進5.4.1積分分離PID控制算法為了克服積分作用太強導(dǎo)致系統(tǒng)產(chǎn)生過大的超調(diào)量,振蕩劇烈,且調(diào)節(jié)時間過長這個缺點,可以采用積分分離的方法,即在系統(tǒng)誤差較大時,取消積分作用,在誤差減小到一定值后,再加上積分作用。這樣既減小了超調(diào)量,改善動態(tài)特性,又保持了積分作用。其具體實現(xiàn)如下:(1)人為設(shè)定一閾值。(2)當(dāng)時,采用PD控制。(3)當(dāng)時,采用PID控制。855.4數(shù)字PID控制算法的工程化改進5.4.1積分分離PID控制算法865.4數(shù)字PID控制算法的工程化改進

5.4.1積分分離PID控制算法875.4數(shù)字PID控制算法的工程化改進對比可知,采用積分分離方法控制效果有很大的改善。a)使用普通PIDb)使用積分分離式PID5.4.1積分分離PID控制算法885.4數(shù)字PID控制算法的工程化改進

895.4數(shù)字PID控制算法的工程化改進5.4.1積分分離PID控制算法

905.4數(shù)字PID控制算法的工程化改進

915.4數(shù)字PID控制算法的工程化改進5.4.2抗積分飽和PID控制算法925.4數(shù)字PID控制算法的工程化改進[例5.8]設(shè)被控對象為:采樣時間為設(shè)跟蹤信號,采用抗積分飽和PID算法進行階躍響應(yīng)分析。

5.4.2抗積分飽和PID控制算法935.4數(shù)字PID控制算法的工程化改進a)采用普通PID控制器b)采用抗積分飽和PID控制器由仿真結(jié)果可以看出,兩種算法均可實現(xiàn)無靜差,通過控制器輸出對比,采用抗積分飽和PID控制器的輸出停留在飽和區(qū)的時間縮短。最終,通過位置信號可以看階躍響應(yīng),采用抗積分飽和PID控制器響應(yīng)時間快,超調(diào)量小。5.4.2抗積分飽和PID控制算法945.4數(shù)字PID控制算法的工程化改進

955.4數(shù)字PID控制算法的工程化改進

965.4數(shù)字PID控制算法的工程化改進a)低通濾波器直接加在微分環(huán)節(jié)b)低通濾波器加在整個PID控制器之后5.4.3不完全微分PID控制算法975.4數(shù)字PID控制算法的工程化改進下面以圖(a)結(jié)構(gòu)為例,說明不完全微分PID控制對一般PID控制性能的改進。對微分項

采用一階向后差分離散化,整理得上式中,令

,則

,式子可簡化為

5.4.3不完全微分PID控制算法985.4數(shù)字PID控制算法的工程化改進

a)標(biāo)準(zhǔn)PID算式b)不完全微分PID算式5.4.4微分先行PID控制算法995.4數(shù)字PID控制算法的工程化改進

微分先行PID控制結(jié)構(gòu)圖5.4.4微分先行PID控制算法1005.4數(shù)字PID控制算法的工程化改進令微分部分的傳遞函數(shù)為:式中,相當(dāng)于低通濾波器,則由差分得:得到公式5.4.4微分先行PID控制算法1015.4數(shù)字PID控制算法的工程化改進化簡得到PI控制部分傳遞函數(shù)為:離散控制律為5.4.4微分先行PID控制算法1025.4數(shù)字PID控制算法的工程化改進[例5.10]設(shè)被控對象為一階慣性時延環(huán)節(jié)為:采樣時間為20s,設(shè)輸入信號為:請將被控對象離散化,采用微分先行PID進行方波響應(yīng)分析。解:步驟一:確定PID的形式為微分先行PID控制器;

5.4.4微分先行PID控制算法1035.4數(shù)字PID控制算法的工程化改進步驟三:依據(jù)MATLAB的pidtool確定PID的參數(shù)。步驟四:分別采用微分先行PID控制和普通PID控制,方波響應(yīng)如圖所示。a)采用普通PID的方波響應(yīng)b)采用微分先行PID的方波響應(yīng)通過仿真曲線可以看出,對于給定值頻繁波動的場合,引入微分先行,可以避免給定值波動時所引起的系統(tǒng)振蕩,明顯改善了系統(tǒng)的動態(tài)性能。5.4.4微分先行PID控制算法1045.4數(shù)字PID控制算法的工程化改進%MATLABPROGRAM5.4.4ts=20;sys=tf([1],[60,1],'inputdelay',80);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v’);u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;ud_1=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;fork=1:1:250time(k)=k*ts;y(k)=-den(2)*y_1+num(2)*u_5;kp=0.36;kd=14;ki=0.0021;yd(k)=1.0*sign(sin(0.00025*2*pi*k*ts));yd(k)=yd(k)+0.05*sin(0.03*pi*k*ts);error(k)=yd(k)-y(k);ei=ei+error(k)*ts;gama=0.50;Td=kd/kp;Ti=0.5;c1=gama*Td/(gama*Td+ts);c2=(Td+ts)/(gama*Td+ts);c3=Td/(gama*Td+ts);M=2;%M=1為微分先行PID,M=2為普通PID

ifM==1

ud(k)=c1*ud_1+c2*y(k)-c3*y_1;

u(k)=kp*error(k)+ud(k)+ki*ei;elseifM==2u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*ei;endu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=y(k);

error_2=error_1;error_l=error(k);endfigurexlabel('t(s)','Fontname','TimesNewRoman','FontSize',14);ylabel('位置信號','FontSize',14);legend('期望位置','實際位置','FontSize',14);gridon5.4.4微分先行PID控制算法1055.4數(shù)字PID控制算法的工程化改進5.4.5帶死區(qū)的PID控制算法在計算機控制系統(tǒng)中,某些系統(tǒng)為了避免控制動作的過于頻繁,消除由于頻繁動作所引起的振蕩,可采用帶死區(qū)的PID控制,如圖所示,相應(yīng)的控制算式為1065.4數(shù)字PID控制算法的工程化改進

5.4.5帶死區(qū)的PID控制算法1075.4數(shù)字PID控制算法的工程化改進[例5.11]設(shè)被控對象為:

分別采用積分分離式PID和帶死區(qū)的PID對系統(tǒng)進行單位階躍響應(yīng)分析,比較兩個控制器的性能。5.4.5帶死區(qū)的PID控制算法1085.4數(shù)字PID控制算法的工程化改進解:步驟一:確定PID的形式為積分分離式PID控制器;步驟三:依據(jù)MATLAB的pidtool確定PID的參數(shù);步驟四:采用積分分離式PID和帶死區(qū)的PID控制器的控制結(jié)果分別如圖所示。

5.4.5帶死區(qū)的PID控制算法1095.4數(shù)字PID控制算法的工程化改進a)純積分分離PID控制器結(jié)果b)帶死區(qū)的PID控制器結(jié)果仿真結(jié)果可以看出,引入帶死區(qū)的PID控制器后,控制器輸出更平穩(wěn),抗干擾能力更強。5.4.5帶死區(qū)的PID控制算法1105.4數(shù)字PID控制算法的工程化改進%MATLABPROGRAM5.4.5ts=0.001;sys=tf(5.235e005,[1,87.35,1.047e004,0]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v’);u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;y_1=0;y_2=0;y_3=0;yn_1=0;error_1=0;error_2=0;ei=0;f_1=0;sys1=tf([1],[0.04,1]);dsys1=c2d(sys1,ts,'tucsin’);[num1,den1]=tfdata(dsys1,'v');fork=1:1:1000time(k)=k*ts;yd(k)=1;y(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;n(k)=0.50*rands(1);yn(k)=y(k)+n(k);filty(k)=-den1(2)*f_1+num1(1)*(yn(k)+yn_1);error(k)=yd(k)-filty(k);ifabs(error(k))<=0.20ei=ei+error(k)*ts;elseei=0;endkp=0.50;ki=0.10;kd=0.020;u(k)=kp*error(k)+ki*ei+kd*(error(k)-error_1)/ts;5.4.5帶死區(qū)的PID控制算法1115.4數(shù)字PID控制算法的工程化改進%MATLABPROGRAM5.4.5M=2;%M=1為純積分分離PID,M=2為帶死區(qū)的PIDifM==1u(k)=u(k);elseifM==2ifabs(error(k))<=0.10u(k)=0;endendyd_1=yd(k);u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=y(k);f_1=filty(k);yn_1=yn(k);error_2=error_1;error_1=error(k);endfigureplot(time,yd,'k',time,y,'k:','linewidth',2);xlabel('t(s)','Fontname','TimesNewRoman','FontSize',14);ylabel('位置信號','FontSize',14);legend('期望位置','實際位置','FontSize',14);gridon5.4.5帶死區(qū)的PID控制算法1125.4數(shù)字PID控制算法的工程化改進第5章計算機控制系統(tǒng)的模擬化設(shè)計法1135.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例1145.5PID參數(shù)對系統(tǒng)性能的影響分析PID控制器是基于比例、積分和微分增益的組合。盡管后兩個增益可以選擇性地歸零,但實際上所有控制器都具有比例增益。采樣周期T的確定對系統(tǒng)的性能也有較大影響。1155.5PID參數(shù)對系統(tǒng)性能的影響分析[例5.13]設(shè)被控對象為采樣時間為0.05s,采用MATLAB的pidtool整定出的控制器參數(shù)為:單位階躍響應(yīng)曲線如圖所示。下面以此對象為例,改變PID控制器參數(shù),分析其對系統(tǒng)性能的影響。

1165.5PID參數(shù)對系統(tǒng)性能的影響分析

1175.5PID參數(shù)對系統(tǒng)性能的影響分析

1185.5PID參數(shù)對系統(tǒng)性能的影響分析

1195.5PID參數(shù)對系統(tǒng)性能的影響分析

1205.5PID參數(shù)對系統(tǒng)性能的影響分析

1215.5PID參數(shù)對系統(tǒng)性能的影響分析第5章計算機控制系統(tǒng)的模擬化設(shè)計法1225.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例1235.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制5.6.2基于響應(yīng)曲線的PID控制5.6.3基于Z-N方法的頻域響應(yīng)PID控制5.6.4基于頻域分析的PD整定5.6.5基于臨界比例度法的PID控制5.6.6多變量PID整定5.6.7先進PID整定方法5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制

(1)整定方法的內(nèi)涵5.6數(shù)字PID控制器的參數(shù)整定5.6.1基于實驗試湊的PID控制

(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制

②若在比例調(diào)節(jié)的基礎(chǔ)上,系統(tǒng)穩(wěn)態(tài)誤差太大,則必須加入積分環(huán)節(jié)。整定時先將第一步所整定的比例系數(shù)略為縮小(如為原值的0.8倍),再將積分時間常數(shù)置成一個較大值并連續(xù)減小,使得在保持系統(tǒng)動態(tài)性能的前提下消除穩(wěn)態(tài)誤差。

這一步驟可反復(fù)進行,即根據(jù)響應(yīng)曲線的好壞反復(fù)改變比例系數(shù)與積分時間常數(shù),以期得到滿意的結(jié)果。(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制

(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制

(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定5.6.1基于實驗試湊的PID控制

(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.1基于實驗試湊的PID控制

此時系統(tǒng)階躍響應(yīng)穩(wěn)態(tài)誤差為0,略有超調(diào),基本達到滿意的性能指標(biāo)。(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.2基于響應(yīng)曲線的PID控制

(1)整定方法的內(nèi)涵5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法對于常規(guī)的控制對象,可以用曲線擬合的方法將階躍響應(yīng)數(shù)據(jù)擬合成近似的一階慣性加純滯后環(huán)節(jié)的模型5.6數(shù)字PID控制器的參數(shù)整定5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6.2基于響應(yīng)曲線的PID控制最小二乘擬合法

(1)整定方法的內(nèi)涵5.6數(shù)字PID控制器的參數(shù)整定5.6.2基于響應(yīng)曲線的PID控制

①讓系統(tǒng)處于開環(huán)狀態(tài)下,將被調(diào)量調(diào)節(jié)到給定值附近并使之穩(wěn)定下來;②給系統(tǒng)加以階躍輸入,記錄被調(diào)量的階躍響應(yīng)曲線;③在階躍響應(yīng)曲線的拐點(即斜率最大的點)處作切線求得滯后時間和被控對象時間常數(shù),然后根據(jù)參數(shù)設(shè)計表求得各參數(shù)。控制規(guī)律模擬控制器PPIPID—10.91.2—3.32.0——0.4(2)整定方法的實施步驟5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定(3)案例分析5.6.2基于響應(yīng)曲線的PID控制例題1:開環(huán)系統(tǒng)的階躍響應(yīng)曲線為:

5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定(3)案例分析5.6.2基于響應(yīng)曲線的PID控制例題1:

階躍響應(yīng)曲線為:

5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定(3)案例分析5.6.2基于響應(yīng)曲線的PID控制例題2:

5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定(3)案例分析5.6.2基于響應(yīng)曲線的PID控制例題2:開環(huán)階躍響應(yīng)曲線和閉環(huán)階躍響應(yīng)曲線:

5.6.2.1連續(xù)系統(tǒng)的響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.2基于響應(yīng)曲線的PID控制

在數(shù)字PID控制器參數(shù)整定時,也可以采用模擬PID控制的響應(yīng)曲線法,即擴充響應(yīng)曲線法。5.6.2.2離散系統(tǒng)的擴充響應(yīng)曲線法(1)整定方法的內(nèi)涵5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.2基于響應(yīng)曲線的PID控制

控制度:反映離散PID控制所能達到的最佳控制品質(zhì)與連續(xù)PID控制所能達到的最佳控制品質(zhì)之間差距的指標(biāo)。其值越大,表示離散控制情況下控制品質(zhì)越差??刂贫纫话銘?yīng)保持在1.2以下,為1.05時

就是控制效果很好。(2)整定方法的實施步驟5.6.2.2離散系統(tǒng)的擴充響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定5.6.2基于響應(yīng)曲線的PID控制

控制度控制規(guī)律1.05PIPID0.10.050.841.153.42.0—0.451.2PIPID0.120.160.781.03.61.9—0.551.5PIPID0.50.340.680.853.91.62—0.652.0PIPID0.80.60.570.64.21.5—0.82模擬控制器PIPID—0.91.23.32.0—0.4簡化擴充響應(yīng)曲線法PIPID—0.91.23.33.0—0.5設(shè)計步驟相同,參數(shù)設(shè)計參照表如下:(2)整定方法的實施步驟5.6.2.2離散系統(tǒng)的擴充響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定5.6.2基于響應(yīng)曲線的PID控制

①斷開反饋通道,給被控對象一個階躍輸入信號:(3)案例分析5.6.2.2離散系統(tǒng)的擴充響應(yīng)曲線法5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.2基于響應(yīng)曲線的PID控制

(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.1連續(xù)系統(tǒng)的頻域響應(yīng)法(1)整定方法的內(nèi)涵

5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.1連續(xù)系統(tǒng)的頻域響應(yīng)法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.1連續(xù)系統(tǒng)的頻域響應(yīng)法(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.2離散系統(tǒng)的頻域響應(yīng)法(1)整定方法的內(nèi)涵

5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.2離散系統(tǒng)的頻域響應(yīng)法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定5.6.3基于Z-N方法的頻域響應(yīng)PID控制

5.6.3.2離散系統(tǒng)的頻域響應(yīng)法(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定5.6.4基于頻域分析的PD整定

(1)整定方法的內(nèi)涵

5.6數(shù)字PID控制器的參數(shù)整定5.6.4基于頻域分析的PD整定

(2)整定方法的步驟

5.6數(shù)字PID控制器的參數(shù)整定5.6.4基于頻域分析的PD整定

(2)整定方法的步驟

5.6數(shù)字PID控制器的參數(shù)整定5.6.4基于頻域分析的PD整定

(3)案例分析

5.6數(shù)字PID控制器的參數(shù)整定5.6.4基于頻域分析的PD整定

(3)案例分析

5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.1臨界比例度法(1)整定方法的內(nèi)涵

5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.1臨界比例度法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.1臨界比例度法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.1臨界比例度法(3)案例分析

5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.2擴充臨界比例度法(1)整定方法的內(nèi)涵擴充臨界比例度法是基于系統(tǒng)臨界振蕩的閉環(huán)整定方法,這一方法是對模擬PID控制中的臨界比例度法的補充。5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.2擴充臨界比例度法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

控制度控制規(guī)律1.05PIPID0.030.0140.550.630.880.49—0.141.2PIPID0.050.0430.490.470.910.47—0.161.5PIPID0.140.090.420.340.990.43—0.202.0PIPID0.220.160.360.271.050.40—0.22模擬控制器PIPID——0.570.700.830.50—0.13簡化的擴充臨界比例度法PIPID——0.450.600.830.50—0.125擴充臨界比例度法整定數(shù)字PID控制器參數(shù)5.6.5.2擴充臨界比例度法(2)整定方法的實施步驟5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.2擴充臨界比例度法(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.2擴充臨界比例度法(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.3歸一化參數(shù)的臨界比例度法:(1)整定方法的內(nèi)涵5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.3歸一化參數(shù)的臨界比例度法:(2)整定方法的步驟對于PID增量算式:

5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.5基于臨界比例度法的PID控制

5.6.5.3歸一化參數(shù)的臨界比例度法:(3)案例分析5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.6多變量PID控制器參數(shù)整定

前面所述經(jīng)典PID整定法主要針對于單變量系統(tǒng)提出,多變量系統(tǒng)具有多個輸入和輸出,內(nèi)部結(jié)構(gòu)復(fù)雜,具有特殊問題,首先是互連和解耦問題,其次是模型不確定性和魯棒性問題,因此經(jīng)典PID整定方法不再適用于多變量系統(tǒng)。多變量PID參數(shù)整定方法可歸納為兩大類:解耦PID控制和無需解耦的PID控制。5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.6多變量PID控制

5.6.6.1解耦PID控制給出二變量解耦系統(tǒng)框圖,系統(tǒng)由兩個PID控制器構(gòu)成:解耦PID控制需要增加解耦環(huán)節(jié),既造成系統(tǒng)在結(jié)構(gòu)上的復(fù)雜性,又增加了計算量,實現(xiàn)較為困難。在PID控制器和MIMO(多入多出)系統(tǒng)之間加入解耦環(huán)節(jié),即可構(gòu)成解耦PID控制。5.6數(shù)字PID控制器的參數(shù)整定必要性5.6.6多變量PID控制

5.6.6.2無需解耦的PID控制隨著先進控制技術(shù)的發(fā)展,將多變量PID控制策略與先進控制策略結(jié)合,形成了許多改進的多變量PID控制器,如多變量內(nèi)模PID控制器、多變量預(yù)測PID控制器,另外,將魯棒控制思想和PID控制結(jié)合,整定多變量PID控制器參數(shù),實現(xiàn)多變量魯棒PID參數(shù)整定方法。5.6數(shù)字PID控制器的參數(shù)整定5.6.7先進PID整定方法

5.6.7.1ISTE最優(yōu)設(shè)定方法5.6.7.2基于增益優(yōu)化的整定法5.6.7.3基于總和時間常數(shù)的整定法5.6數(shù)字PID控制器的參數(shù)整定5.6.7先進PID整定方法

5.6.7.1ISTE最優(yōu)設(shè)定方法

針對各種指標(biāo)函數(shù)給出最優(yōu)PID參數(shù)整定算法,考慮最優(yōu)指標(biāo)通式:

5.6數(shù)字PID控制器的參數(shù)整定必要性

5.6.7先進PID整定方法5.6.7.2基于增益優(yōu)化的整定法本方法是從PID調(diào)節(jié)器和受控對象組成閉環(huán)系統(tǒng)的頻率特性出發(fā),指定在大頻率范圍使幅頻特性等于1;根據(jù)測量得到的階躍響應(yīng)瞬時值去計算PID控制器的參數(shù)值。受控對象傳遞函數(shù)為可以導(dǎo)出5.6數(shù)字PID控制器的參數(shù)整定必要性

5.6.7先進PID整定方法5.6.7.2基于增益優(yōu)化的整定法

5.6數(shù)字PID控制器的參數(shù)整定必要性

5.6.7先進PID整定方法5.6.7.3基于總和時間常數(shù)的整定法

定義總和時間常數(shù)為5.6數(shù)字PID控制器的參數(shù)整定第5章計算機控制系統(tǒng)的模擬化設(shè)計法1755.1離散與連續(xù)等效設(shè)計的基本步驟5.2模擬控制器的離散化5.3數(shù)字PID控制器設(shè)計5.4數(shù)字PID控制算法的工程化改進5.5PID控制器參數(shù)對系統(tǒng)性能的影響分析

5.6數(shù)字PID控制器的參數(shù)整定5.7模擬化設(shè)計方法綜合舉例1765.7模擬化設(shè)計方法綜合舉例(參考書)本節(jié)所分析的案例來自于一個典型的伺服系統(tǒng)(定位系統(tǒng))。在該系統(tǒng)中,電機用于旋轉(zhuǎn)自動跟蹤飛機的雷達天線。誤差信號與天線指向方向和飛機視線之間的差值成比例,被放大并在適當(dāng)?shù)姆较蝌?qū)動電機,以減少該誤差。假設(shè)伺服系統(tǒng)的模型為一個三階傳遞函數(shù)即:1775.7模擬化設(shè)計方法綜合舉例

1785.7模擬化設(shè)計方法綜合舉例(2)位置式PID控制器設(shè)計令,選擇位置式PID控制器為系統(tǒng)的控制器,即:使用MATLAB的pidtool工具確定位置式PID控制器的參數(shù)為,,。則系統(tǒng)的階躍響應(yīng)跟蹤如圖所示。1795.7模擬化設(shè)計方法綜合舉例階躍響應(yīng)跟蹤曲線(3)積分分離式PID控制器選擇積分分離PID控制器,設(shè),根據(jù)公式

確定比例前系數(shù)。系統(tǒng)的輸出曲線如圖所示。從圖中可以看出,采用積分分離式PID控制器可以顯著減小超調(diào)和二次超調(diào),系統(tǒng)的跟蹤性能有所提高。1805.7模擬化設(shè)計方法綜合舉例跟蹤曲線對比《計算機控制系統(tǒng)》第6章計算機控制系統(tǒng)的離散化設(shè)計(計算機控制系統(tǒng)的直接設(shè)計,第一次課)1、計算機控制系統(tǒng)模擬化設(shè)計方法回顧182第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)連續(xù)化設(shè)計方法的特點:立足于連續(xù)控制系統(tǒng)的設(shè)計方法,設(shè)計模擬控制器;離散化模擬控制器,用計算機進行數(shù)字模擬;對于相當(dāng)短的采樣周期,可以實現(xiàn)簡單的控制算法。1、計算機控制系統(tǒng)模擬化設(shè)計方法回顧(序)183第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)連續(xù)化設(shè)計方法的缺點:離散化是一個近似過程;考慮ZOH影響,相當(dāng)于附加一個T/2的延遲環(huán)節(jié):使閉環(huán)系統(tǒng)的穩(wěn)定性和動態(tài)性能變壞。T的選取很重要,應(yīng)盡可能短。模擬化設(shè)計方法應(yīng)用注意的問題必須以采樣周期足夠小為前提,許多實際系統(tǒng)中難以滿足這一要求;沒有反映采樣點之間的性能,特別是當(dāng)采樣周期過大,除有可能造成控制系統(tǒng)不穩(wěn)定外,還使系統(tǒng)長時間處于“開環(huán)”、失控狀態(tài)。因此,系統(tǒng)的調(diào)節(jié)品質(zhì)變壞;等效離散化設(shè)計所構(gòu)造的計算機控制系統(tǒng),其性能指標(biāo)只能接近于原連續(xù)系統(tǒng)(只有當(dāng)采樣周期T=0時,計算機控制系統(tǒng)才完全等同于連續(xù)系統(tǒng)),而不可能超過它。因此,這種方法也被稱之為近似設(shè)計。184第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)1、計算機控制系統(tǒng)模擬化設(shè)計方法回顧(續(xù))——計算機控制系統(tǒng)的直接離散化設(shè)計2、計算機控制系統(tǒng)的離散化設(shè)計法

離散設(shè)計法定義:

是先將被控對象和保持器組成的連續(xù)部分離散化,然后應(yīng)用離散控制理論的方法進行分析和綜合,直接設(shè)計出滿足控制指標(biāo)的離散控制器,用計算機來實現(xiàn)。185第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)以計算機控制理論(采樣系統(tǒng)理論)為基礎(chǔ),以Z變換為工具,根據(jù)控制系統(tǒng)的性能指標(biāo),在Z域直接設(shè)計數(shù)字控制器,故稱直接離散化設(shè)計方法。離散化設(shè)計法的優(yōu)點

不存在采樣周期必須足夠小的限制,采樣周期只取決于問題本身,與所采取的方法無關(guān);可以考慮采樣點之間的性能;可以得到比相應(yīng)連續(xù)系統(tǒng)更好的性能;

采樣周期選擇靈活,主要取決于對象特性,而不受分析方法限制;可推導(dǎo)出具有一般意義的控制規(guī)律和算法,且精度高。186第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)精確設(shè)計法2、計算機控制系統(tǒng)的離散化設(shè)計法

187第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)2、計算機控制系統(tǒng)的離散化設(shè)計法離散化設(shè)計方法的類型188第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)解析法(最少拍控制、大林算法、Smith預(yù)估器法等)根軌跡法頻域設(shè)計法(W變換法)2、計算機控制系統(tǒng)的離散化設(shè)計法189

在控制理論學(xué)習(xí)中,控制系統(tǒng)的動態(tài)設(shè)計是全部設(shè)計任務(wù)中最復(fù)雜最困難的部分。從數(shù)學(xué)上看,為給定的被控制對象設(shè)計控制器,比分析一個給定的控制系統(tǒng)的運動確實要困難得多(自動控制理論設(shè)計內(nèi)容偏少)。(1)一個給定的控制系統(tǒng)的運動,在數(shù)學(xué)上無非就是求解一組給定的微分方程,可以借助于計算機求出數(shù)值解。

(2)控制對象的數(shù)學(xué)模型是另一組給定的微分方程。(3)在此基礎(chǔ)上,尋找一組未知的微分方程(即控制器的數(shù)學(xué)模型)。(4)控制器還受到額外的約束:所求的控制器必須滿足一系列附加條件才能在工程上實現(xiàn)。這些條件往往使問題更難解決。3、解析法(以連續(xù)系統(tǒng)為例)第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器。190:分別是給定的單輸入單輸出線性被控制對象是開環(huán)系統(tǒng)的傳遞函數(shù)。簡單示例(單入單出控制系統(tǒng))::待設(shè)計的控制器的傳遞函數(shù),根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)3、解析法(以連續(xù)系統(tǒng)為例)191設(shè)給定:又設(shè),當(dāng)輸入信號(6-1)為單位階躍函數(shù)時,設(shè)計人希望閉環(huán)系統(tǒng)的輸出信號為如下函數(shù):簡單示例(單入單出控制系統(tǒng))第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)192階躍響應(yīng)曲線(y1):從表面上看,(6-1)函數(shù)很簡單,而且其圖像如下圖曲線。動態(tài)品質(zhì)令人滿意,但設(shè)計結(jié)果出人意料。單輸入單輸出系統(tǒng)的階躍響應(yīng)第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)193運用Laplace變換處理式(6-1),以的Laplace變換函數(shù):對應(yīng)的控制器設(shè)計:表示因是單位階躍函數(shù),即故所要求的閉環(huán)系統(tǒng)傳遞函數(shù)應(yīng)為:第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)194因此控制器的傳遞函數(shù)應(yīng)為:不是真有理函數(shù),因而這樣的控制器在工程上不可能實現(xiàn),設(shè)計失敗根據(jù)開環(huán)系統(tǒng)與閉環(huán)系統(tǒng)傳遞函數(shù),容易求得開環(huán)系統(tǒng)的傳遞函數(shù)應(yīng)為:對應(yīng)的控制器設(shè)計:第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)問題出在哪里?195問題的進一步分析:

上面的例子中,階躍響應(yīng)函數(shù)(式(6-1))是設(shè)計人自由選取的,可以把它稱作自由參數(shù),或設(shè)計參數(shù),它是這個設(shè)計過程的出發(fā)點,正是由于設(shè)計人把這個設(shè)計參數(shù)選成了式(6-1),致使最終算得的控制器在工程上不可能實現(xiàn),應(yīng)當(dāng)承認,設(shè)計人把設(shè)計參數(shù)選取為式(6-1)是不適當(dāng)?shù)?,是設(shè)計失敗的原因。第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)196

設(shè)計人所選取的設(shè)計參數(shù)不但應(yīng)當(dāng)保證系統(tǒng)的穩(wěn)定并且動態(tài)品質(zhì)滿意,還必須使最終所得的控制器在工程上能夠?qū)崿F(xiàn)。(1)控制器的傳遞函數(shù)必須是真有理函數(shù);(2)控制器的傳遞函數(shù)還必須在復(fù)數(shù)平面的右半面沒有極點(即控制器本身須是穩(wěn)定的);(3)控制器還應(yīng)盡量簡單;(4)在許多情況下,特別是對于多輸入輸出的對象,通常還要求魯棒性好。第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)結(jié)果的進一步分析—總結(jié):197

反過來看,根據(jù)被控對象特性如果采用如下的兩級超前控制器:

則開環(huán)傳函:

可以算得,此系統(tǒng)的輸出量的Laplace變換像函數(shù)成為:在上面的例子中,由于在選取函數(shù)時沒有考慮到這許多也就是有一定的盲目性,盡管計算完全正確,但還是失敗了。第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)198與此相應(yīng)的輸出量函數(shù)是:(曲線為單位階躍響應(yīng)圖中

)(6-2)第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)199第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)

由下圖可見,階躍響應(yīng)曲線y1和y2動態(tài)品質(zhì)其實與并沒有多少差別,然而,y2所對應(yīng)的控制器的傳遞函數(shù)不但是穩(wěn)定的真有理函數(shù),而且很簡單(只有2階),工程上很容易實現(xiàn)。200如果當(dāng)初選取設(shè)計參數(shù)時,如果不選式(6-1)而選式(6-2)就好了,但是在實際設(shè)計過程中,如果沒有先進的理論和經(jīng)驗指導(dǎo),設(shè)計人當(dāng)然不會想到選取復(fù)雜的式(6-2)而會自然地傾向于選取較簡單的式(6-1)。上述簡單例子不僅僅解釋了解析法內(nèi)涵,更加顯示了設(shè)計控制系統(tǒng)的難點所在和在設(shè)計過程選取設(shè)計參數(shù)這一步驟的關(guān)鍵意義。第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)201

在實際設(shè)計工作中,人們從來不會像上面那樣預(yù)先限定的具體函數(shù)形式如式(6-1)或式(6-2)之類,而只會規(guī)定階躍響應(yīng)函數(shù)應(yīng)當(dāng)滿足的某些品質(zhì)指標(biāo)或特征,如超調(diào)量和過渡過程時間,或是要求某種加權(quán)的積分指標(biāo)值盡可能小等等。設(shè)計結(jié)果的進一步分析:第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)[1]王廣雄.控制系統(tǒng)設(shè)計[M],北京:清華大學(xué)出版社.2008.采用任何一種特定的設(shè)計方法控制系統(tǒng)時,控制器本身必須滿足:穩(wěn)定性、真有理函數(shù)、結(jié)構(gòu)簡單且工程上易用。設(shè)計控制系統(tǒng)確實有相當(dāng)難度,在控制器設(shè)計過程中選取設(shè)計參數(shù)往往具有關(guān)鍵的意義:“設(shè)計人員自由選取的設(shè)計參數(shù)之間的微小差別,竟可以影響到設(shè)計的成敗”[1]。202

上面舉的還只是一個很簡單的單輸入單輸出線性系統(tǒng)的例子,對于多輸入多輸出的控制系統(tǒng)和其他復(fù)雜系統(tǒng),設(shè)計的困難無疑更大。

選取設(shè)計參數(shù)的這種困難,與先進的控制系統(tǒng)設(shè)計理論和滯后的設(shè)計實踐(或忽視設(shè)計實踐)相脫節(jié)這種局面有密切聯(lián)系?!碚撀?lián)系實際,重視實踐,重視積累,“接地氣”第6章計算機控制系統(tǒng)的離散化設(shè)計第六章模塊導(dǎo)學(xué)根據(jù)已知的被控對象和理想閉環(huán)傳遞函數(shù),確定控制器3、解析法(以連續(xù)系統(tǒng)為例)

簡單例子的深入思考:第6章計算機控制系統(tǒng)的離散化設(shè)計203第6章計算機控制系統(tǒng)的離散化設(shè)計2046.1離散化設(shè)計方法的基本原理6.2最小拍控制器設(shè)計方法6.3具有滯后環(huán)節(jié)系統(tǒng)的數(shù)字控制器設(shè)計6.4數(shù)字控制器的計算機實現(xiàn)6.5離散化設(shè)計法綜合舉例2056.1離散化設(shè)計方法的基本原理考慮如圖所示的控制系統(tǒng)結(jié)構(gòu),其中為零階保持器,為被控對象,為控制器。廣義被控對象的脈沖傳遞函數(shù)為

(6.3)根據(jù)上圖可以直接得到閉環(huán)脈沖傳遞函數(shù)為

(6.4)2066.1離散化設(shè)計方法的基本原理

6.1.1基本原理誤差脈沖傳遞函數(shù):

(6.5)

數(shù)字控制器(6.6)即,若被控對象的脈沖傳遞函數(shù)已知,并且根據(jù)系統(tǒng)性能指標(biāo)已經(jīng)得到閉環(huán)系統(tǒng)的傳遞函數(shù)或誤差脈沖傳遞函數(shù),那么可以根據(jù)(6.6)式將數(shù)字控制器確定。2076.1離散化設(shè)計方法的基本原理

6.1離散化設(shè)計方法的基本原理6.1.2設(shè)計步驟(1)據(jù)(6.3)獲取被控對象傳遞函數(shù),根據(jù)被控對象的連續(xù)傳遞函數(shù)連同一起進行離散化得到;(2)據(jù)系統(tǒng)性能指標(biāo),確定閉環(huán)傳遞函數(shù)或誤差脈沖傳遞函數(shù)(3)根據(jù)(6.5)計算數(shù)字控制器;(4)對得到的數(shù)字控制器進行編程實現(xiàn)。6.1離散化設(shè)計方法的基本原理閉環(huán)傳遞函數(shù)或誤差脈沖傳遞函數(shù)確定原則:的設(shè)計需滿足快速性、準(zhǔn)確性、穩(wěn)定性要求;數(shù)字控制器的設(shè)計還需要滿足物理可實現(xiàn)性,換言之,必須是物理邏輯上可實現(xiàn)的,要求其分母的最高階次不小于分子的最高階次。6.1離散化設(shè)計方法的基本原理

6.1離散化設(shè)計方法的基本原理

6.1離散化設(shè)計方法的基本原理

零點多項式極點多項式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論