吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第1頁
吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第2頁
吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第3頁
吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第4頁
吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省長春市九臺示范高級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在“一帶一路”的知識測試后甲、乙、丙三人對成績進(jìn)行預(yù)測.甲:我的成績最高.乙:我的成績比丙的成績高丙:我的成績不會最差成績公布后,三人的成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序可能為()A.甲、丙、乙 B.乙、丙、甲C.甲、乙、丙 D.丙、甲、乙2.已知雙曲線的一條漸近線與軸所形成的銳角為,則雙曲線的離心率為()A. B. C.2 D.或23.函數(shù)f(x)=x3+ax2A.-3或3 B.3或-9 C.3 D.-34.l:與兩坐標(biāo)軸所圍成的三角形的面積為A.6 B.1 C. D.35.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.6.函數(shù)的大致圖象是()A. B.C. D.7.“b2=ac”是“a,b,c成等比數(shù)列”A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.已知函數(shù)與的圖象如圖所示,則函數(shù)()A.在區(qū)間上是減函數(shù) B.在區(qū)間上是減函數(shù)C.在區(qū)間上減函數(shù) D.在區(qū)間上是減函數(shù)9.若,滿足條件,則的最小值為()A. B. C. D.10.有8件產(chǎn)品,其中4件是次品,從中有放回地取3次(每次1件),若X表示取得次品的次數(shù),則()A. B. C. D.11.以下四個命題中,真命題的是()A.B.“對任意的”的否定是“存在”C.,函數(shù)都不是偶函數(shù)D.中,“”是“”的充要條件12.當(dāng)生物死亡后,其體內(nèi)原有的碳的含量大約每經(jīng)過年衰減為原來的一半,這個時間稱為“半衰期”.在一次考古挖掘中,考古學(xué)家發(fā)現(xiàn)一批魚化石,經(jīng)檢測其碳14含量約為原始含量的,則該生物生存的年代距今約()A.萬年 B.萬年 C.萬年 D.萬年二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量,且,則______.14.若,且,那么__________.15.已知向量滿足:,,當(dāng)取最大值時,______.16.若某一射手射擊所得環(huán)數(shù)的分布列如下:456789100.020.040.060.090.280.290.22則此射手“射擊一次命中環(huán)數(shù)”的概率是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的定義域為.(1)若,解不等式;(2)若,求證:.18.(12分)已知命題方程表示圓;命題雙曲線的離心率,若命題“”為假命題,“”為真命題,求實數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,點P到兩點,的距離之和等于4,設(shè)點P的軌跡為.(Ⅰ)寫出C的方程;(Ⅱ)設(shè)直線與C交于A,B兩點.k為何值時?此時的值是多少?20.(12分)已知,,分別為三個內(nèi)角,,的對邊,且.(1)求角的大??;(2)若且的面積為,求的值.21.(12分)復(fù)數(shù),若是實數(shù),求實數(shù)的值.22.(10分)在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點.(1)求橢圓的方程(2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

假設(shè)一個人預(yù)測正確,然后去推導(dǎo)其他兩個人的真假,看是否符合題意.【題目詳解】若甲正確,則乙丙錯,乙比丙成績低,丙成績最差,矛盾;若乙正確,則甲丙錯,乙比丙高,甲不是最高,丙最差,則成績由高到低可為乙、甲、丙;若丙正確,則甲乙錯,甲不是最高,乙比丙低,丙不是最差,排序可為丙、甲、乙.A、B、C、D中只有D可能.故選D.【題目點撥】本題考查合情推理,抓住只有一個人預(yù)測正確是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解題分析】

轉(zhuǎn)化條件得,再利用即可得解.【題目詳解】由題意可知雙曲線的漸近線為,又漸近線與軸所形成的銳角為,,雙曲線離心率.故選:C.【題目點撥】本題考查了雙曲線的性質(zhì),屬于基礎(chǔ)題.3、C【解題分析】

題意說明f'(1)=0,f(1)=7,由此可求得a,b【題目詳解】f'(x)=3x∴f(1)=1+a+b+a2+a=7f'(1)=3+2a+b=0,解得a=3,b=-9時,f'(x)=3x2+6x-9=3(x-1)(x+3),當(dāng)-3<x<1時,f'(x)<0,當(dāng)x>1時,f'(x)>0a=-3,b=3時,f'(x)=3x2-6x+3=3∴a=3.故選C.【題目點撥】本題考查導(dǎo)數(shù)與極值,對于可導(dǎo)函數(shù)f(x),f'(x0)=0是x0為極值的必要條件,但不是充分條件,因此由4、D【解題分析】

先求出直線與坐標(biāo)軸的交點,再求三角形的面積得解.【題目詳解】當(dāng)x=0時,y=2,當(dāng)y=0時,x=3,所以三角形的面積為.故選:D【題目點撥】本題主要考查直線與坐標(biāo)軸的交點的坐標(biāo)的求法,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.5、D【解題分析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標(biāo)求得,由此求得函數(shù)的解析式.【題目詳解】由題圖可知,且即,所以,將點的坐標(biāo)代入函數(shù),得,即,因為,所以,所以函數(shù)的表達(dá)式為.故選D.【題目點撥】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.6、D【解題分析】

利用函數(shù)的奇偶性排除選項,利用特殊值定義點的位置判斷選項即可.【題目詳解】函數(shù)是偶函數(shù),排除選項B,當(dāng)x=2時,f(2)=<0,對應(yīng)點在第四象限,排除A,C;故選D.【題目點撥】本題考查函數(shù)的圖象的判斷,考查數(shù)形結(jié)合以及計算能力.7、B【解題分析】8、B【解題分析】分析:求出函數(shù)的導(dǎo)數(shù),結(jié)合圖象求出函數(shù)的遞增區(qū)間即可.詳解:,

由圖象得:時,,

故在遞增,

故選:B.點睛:本題考查了函數(shù)的單調(diào)性問題,考查數(shù)形結(jié)合思想,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.9、A【解題分析】作出約束條件對應(yīng)的平面區(qū)域(陰影部分),由z=2x﹣y,得y=2x﹣z,平移直線y=2x﹣z,由圖象可知當(dāng)直線y=2x﹣z,經(jīng)過點A時,直線y=2x﹣z的截距最大,此時z最?。山獾肁(0,2).此時z的最大值為z=2×0﹣2=﹣2,故選A.點睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域.(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值.10、D【解題分析】

首先把取一次取得次品的概率算出來,再根據(jù)離散型隨機(jī)變量的概率即可算出.【題目詳解】因為是有放回地取產(chǎn)品,所以每次取產(chǎn)品取到次品的概率為.從中取3次,為取得次品的次數(shù),則,,選擇D答案.【題目點撥】本題考查離散型隨機(jī)變量的概率,解題時要注意二項分布公式的靈活運用.屬于基礎(chǔ)題.11、D【解題分析】

解:A.若sinx=tanx,則sinx=tanx,∵x∈(0,π),∴sinx≠0,則1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故?x∈(0,π),使sinx=tanx錯誤,故A錯誤,B.“對任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B錯誤,C.當(dāng)θ時,f(x)=sin(2x+θ)=sin(2x)=cos2x為偶函數(shù),故C錯誤,D.在△ABC中,C,則A+B,則由sinA+sinB=sin(B)+sin(A)=cosB+cosA,則必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,兩邊平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,則2A=2B或2A=π﹣2B,即A=B或A+B,當(dāng)A=B時,sinA+sinB=cosA+cosB等價為2sinA=2cosA,∴tanA=1,即A=B,此時C,綜上恒有C,即充分性成立,綜上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要條件,故D正確,故選D.考點:全稱命題的否定,充要條件等12、C【解題分析】

根據(jù)實際問題,可抽象出,按對數(shù)運算求解.【題目詳解】設(shè)該生物生存的年代距今是第個5730年,到今天需滿足,解得:,萬年.故選C.【題目點撥】本題考查了指數(shù)和對數(shù)運算的實際問題,考查了轉(zhuǎn)化與化歸和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、0.9【解題分析】

根據(jù)正態(tài)分布性質(zhì)計算概率.【題目詳解】由正態(tài)分布密度曲線知,又,所以,所以.【題目點撥】本題考查正態(tài)分布的性質(zhì),由正態(tài)分布曲線的對稱性得若,則,.14、1【解題分析】分析:根據(jù)條件中所給的二項式定理的展開式,寫出a和b的值,根據(jù)這兩個數(shù)字的比值,寫出關(guān)于n的等式,即方程,解方程就可以求出n的值.詳解:∵(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),∴a=Cn3,b=Cn2,∵a:b=3:1,∴a:b=Cn3:Cn2=3:1,∴:=3:1,∴n=1.故答案為:1點睛:本題是考查二項式定理應(yīng)用,考查二項式定理的二項式系數(shù),屬于基礎(chǔ)題,解題的關(guān)鍵是利用通項公式確定a與b的值.15、【解題分析】

根據(jù)向量模的性質(zhì)可知當(dāng)與反向時,取最大值,根據(jù)模長的比例關(guān)系可得,整理可求得結(jié)果.【題目詳解】當(dāng)且僅當(dāng)與反向時取等號又整理得:本題正確結(jié)果:【題目點撥】本題考查向量模長的運算性質(zhì),關(guān)鍵是能夠確定模長取得最大值時,兩個向量之間的關(guān)系,從而得到兩個向量之間的關(guān)系.16、【解題分析】因,故應(yīng)填答案。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解題分析】分析:(1)由可得,然后將不等式中的絕對值去掉后解不等式可得所求.(2)結(jié)合題意運用絕對值的三角不等式證明即可.詳解:(1),即,則,∴,∴不等式化為.①當(dāng)時,不等式化為,解得;②當(dāng)時,不等式化為,解得.綜上可得.∴原不等式的解集為.(2)證明:∵,∴.又,∴.點睛:含絕對值不等式的常用解法(1)基本性質(zhì)法:當(dāng)a>0時,|x|<a?-a<x<a,|x|>a?x<-a或x>a.(2)零點分區(qū)間法:含有兩個或兩個以上絕對值符號的不等式,可用零點分區(qū)間法去掉絕對值符號,將其轉(zhuǎn)化為與之等價的不含絕對值符號的不等式(組)求解.(3)幾何法:利用絕對值的幾何意義,畫出數(shù)軸,將絕對值轉(zhuǎn)化為數(shù)軸上兩點的距離求解.(4)數(shù)形結(jié)合法:在直角坐標(biāo)系中作出不等式兩邊所對應(yīng)的兩個函數(shù)的圖象,利用函數(shù)圖象求解.18、【解題分析】試題分析:先化簡命題,得到相應(yīng)的數(shù)集;再根據(jù)真值表得到的真假性,再分類進(jìn)行求解.試題解析:若命題為真命題,則,即整理得,解得4分若命題為真命題,則,解得8分因為命題為假命題,為真命題,所以中一真一假,10分若真假,則;若假真,則,所以實數(shù)的取值范圍為.12分考點:1.圓的一般方程;2.雙曲線的結(jié)合性質(zhì);3.復(fù)合命題的真值表.19、(Ⅰ)曲線C的方程為.(Ⅱ)時,.【解題分析】

(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點P的軌跡C是以為焦點,長半軸為2的橢圓.它的短半軸,故曲線C的方程為.(Ⅱ)設(shè),其坐標(biāo)滿足消去y并整理得,故.,即.而,于是.所以時,,故.當(dāng)時,,.,而,所以.【題目詳解】請在此輸入詳解!20、(1);(2).【解題分析】分析:(1)根據(jù)正弦定理邊化角,根據(jù)三角恒等變換求出A;(2)根據(jù)面積求出bc=4,利用余弦定理求出a.詳解:(1)由正弦定理得,∵∴,即.∵,∴,∴∴.(2)由:可得.∴,∵,∴由余弦定理得:,∴.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化.第三步:求結(jié)果.21、【解題分析】

將復(fù)數(shù)進(jìn)行四則運算,利用是實數(shù),得到關(guān)于的二次方程,求得的值即可.【題目詳解】,因為是實數(shù),所以或,因為,所以.【題目點撥】本題考查復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念、復(fù)數(shù)的分類,考查運算求解能力.22、(1);(2)存在直線滿足題設(shè)條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論